
Previous Article
Linear quadratic meanfieldgame of backward stochastic differential systems
 MCRF Home
 This Issue

Next Article
Null controllability of the LotkaMcKendrick system with spatial diffusion
Inverse Sshaped probability weighting and its impact on investment
1.  Department of SEEM, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China 
2.  College of Management, Mahidol University, Bangkok, Thailand 
3.  Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, The Netherlands 
4.  Department of IEOR, Columbia University, 500 W. 120th Street, New York, NY 10027, USA 
In this paper we analyze how changes in inverse Sshaped probability weighting influence optimal portfolio choice in a rankdependent utility model. We derive sufficient conditions for the existence of an optimal solution of the investment problem, and then define the notion of a more inverse Sshaped probability weighting function. We show that an increase in inverse Sshaped weighting typically leads to a lower allocation to the risky asset, regardless of whether the return distribution is skewed left or right, as long as it offers a nonnegligible risk premium. Only for lottery stocks with poor expected returns and extremely positive skewness does an increase in inverse Sshaped probability weighting lead to larger portfolio allocations.
References:
[1] 
A. Azzalini, A class of distributions which includes the normal ones, Scandinavian Journal of Statistics, 12 (1985), 171178. 
[2] 
T. G. Bali, N. Cakici and R. F. Whitelaw, Maxing out: Stocks as lotteries and the crosssection of expected returns, Journal of Financial Economics, 99 (2011), 427446. 
[3] 
N. Barberis and M. Huang, Stocks as lotteries: The implications of probability weighting for security prices, American Economic Review, 98 (2008), 20662100. 
[4] 
H. Bessembinder, Do stocks outperform treasury bills?, Journal of Financial Economics, 129 (2018), 440457. doi: 10.1016/j.jfineco.2018.06.004. 
[5] 
A. Booij, B. van Praag and G. van de Kuilen, A parametric analysis of prospect theory's functionals for the general population, Theory and Decision, 68 (2010), 115148. doi: 10.1007/s1123800991444. 
[6] 
B. Boyer, T. Mitton and K. Vorkink, Expected idiosyncratic skewness, Review of Financial Studies, 23 (2010), 169202. 
[7] 
B. H. Boyer and K. Vorkink, Stock options as lotteries, Journal of Finance, 69 (2014), 14851527. 
[8] 
L. Carassus and M. Rasonyi, Maximization of nonconcave utility functions in discretetime financial market models, Mathematics of Operations Research, 41 (2016), 146173. doi: 10.1287/moor.2015.0720. 
[9] 
S. H. Chew, E. Karni and Z. Safra, Risk aversion in the theory of expected utility with rank dependent probabilities, Journal of Economic Theory, 42 (1987), 370381. doi: 10.1016/00220531(87)900937. 
[10] 
J. Conrad, R. F. Dittmar and E. Ghysels, Ex ante skewness and expected stock returns, Journal of Finance, 68 (2013), 85124. 
[11] 
J. Conrad, N. Kapadia and Y. Xing, Death and jackpot: Why do individual investors hold overpriced stocks?, Journal of Financial Economics, 113 (2014), 455475. doi: 10.1016/j.jfineco.2014.04.001. 
[12] 
E. G. De Giorgi and S. Legg, Dynamic portfolio choice and asset pricing with narrow framing and probability weighting, Journal of Economic Dynamics and Control, 36 (2012), 951972. doi: 10.1016/j.jedc.2012.01.010. 
[13] 
H. FehrDuda and T. Epper, Probability and risk: Foundations and economic implications of probabilitydependent risk preferences, Annual Review of Economics, 4 (2012), 567593. doi: 10.1146/annureveconomics080511110950. 
[14] 
W. M. Goldstein and H. J. Einhorn, Expression theory and the preference reversal phenomena, Psychological Review, 94 (1987), 236254. doi: 10.1037/0033295X.94.2.236. 
[15] 
R. Gonzalez and G. Wu, On the shape of the probability weighting function, Cognitive Psychology, 38 (1999), 129166. doi: 10.1006/cogp.1998.0710. 
[16] 
X. D. He, R. Kouwenberg and X. Y. Zhou, Rankdependent utility and risk taking in complete markets, SIAM Journal on Financial Mathematics, 8 (2017), 214239. doi: 10.1137/16M1072516. 
[17] 
X. D. He and X. Y. Zhou, Portfolio choice under cumulative prospect theory: An analytical treatment, Management Science, 57 (2011), 315331. 
[18] 
D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 263291. doi: 10.21236/ADA045771. 
[19] 
D. Kramkov and W. Schachermayer, The asymptotic elasticity of utility functions and optimal investment in incomplete markets, Annals of Applied Probability, 9 (1999), 904950. doi: 10.1214/aoap/1029962818. 
[20] 
A. Kumar, Who gambles in the stock market?, Journal of Finance, 64 (2009), 18891933. doi: 10.1111/j.15406261.2009.01483.x. 
[21] 
P. K. Lattimore, J. R. Baker and A. D. Witte, Influence of probability on risky choice: A parametric examination, Journal of Economic Behavior and Organization, 17 (1992), 377400. 
[22] 
C. Low, D. Pachamanova and M. Sim, Skewnessaware asset allocation: A new theoretical framework and empirical evidence, Mathematical Finance, 22 (2012), 379410. doi: 10.1111/j.14679965.2010.00463.x. 
[23] 
I. P. Natanson, Theory of Functions of a Real Variable, vol. 1, Frederick Ungar, New York, 1955. 
[24] 
V. Polkovnichenko, Household portfolio diversification: A case for rankdependent preferences, Review of Financial Studies, 18 (2005), 14671502. 
[25] 
A. Tversky and C. R. Fox, Weighing risk and uncertainty, Psychological Review, 102 (1995), 269283. doi: 10.1037/0033295X.102.2.269. 
[26] 
A. Tversky and D. Kahneman, Advances in prospect theory: Cumulative representation of uncertainty, Journal of Risk and Uncertainty, 5 (1992), 297323. doi: 10.1007/9783319204512_24. 
show all references
References:
[1] 
A. Azzalini, A class of distributions which includes the normal ones, Scandinavian Journal of Statistics, 12 (1985), 171178. 
[2] 
T. G. Bali, N. Cakici and R. F. Whitelaw, Maxing out: Stocks as lotteries and the crosssection of expected returns, Journal of Financial Economics, 99 (2011), 427446. 
[3] 
N. Barberis and M. Huang, Stocks as lotteries: The implications of probability weighting for security prices, American Economic Review, 98 (2008), 20662100. 
[4] 
H. Bessembinder, Do stocks outperform treasury bills?, Journal of Financial Economics, 129 (2018), 440457. doi: 10.1016/j.jfineco.2018.06.004. 
[5] 
A. Booij, B. van Praag and G. van de Kuilen, A parametric analysis of prospect theory's functionals for the general population, Theory and Decision, 68 (2010), 115148. doi: 10.1007/s1123800991444. 
[6] 
B. Boyer, T. Mitton and K. Vorkink, Expected idiosyncratic skewness, Review of Financial Studies, 23 (2010), 169202. 
[7] 
B. H. Boyer and K. Vorkink, Stock options as lotteries, Journal of Finance, 69 (2014), 14851527. 
[8] 
L. Carassus and M. Rasonyi, Maximization of nonconcave utility functions in discretetime financial market models, Mathematics of Operations Research, 41 (2016), 146173. doi: 10.1287/moor.2015.0720. 
[9] 
S. H. Chew, E. Karni and Z. Safra, Risk aversion in the theory of expected utility with rank dependent probabilities, Journal of Economic Theory, 42 (1987), 370381. doi: 10.1016/00220531(87)900937. 
[10] 
J. Conrad, R. F. Dittmar and E. Ghysels, Ex ante skewness and expected stock returns, Journal of Finance, 68 (2013), 85124. 
[11] 
J. Conrad, N. Kapadia and Y. Xing, Death and jackpot: Why do individual investors hold overpriced stocks?, Journal of Financial Economics, 113 (2014), 455475. doi: 10.1016/j.jfineco.2014.04.001. 
[12] 
E. G. De Giorgi and S. Legg, Dynamic portfolio choice and asset pricing with narrow framing and probability weighting, Journal of Economic Dynamics and Control, 36 (2012), 951972. doi: 10.1016/j.jedc.2012.01.010. 
[13] 
H. FehrDuda and T. Epper, Probability and risk: Foundations and economic implications of probabilitydependent risk preferences, Annual Review of Economics, 4 (2012), 567593. doi: 10.1146/annureveconomics080511110950. 
[14] 
W. M. Goldstein and H. J. Einhorn, Expression theory and the preference reversal phenomena, Psychological Review, 94 (1987), 236254. doi: 10.1037/0033295X.94.2.236. 
[15] 
R. Gonzalez and G. Wu, On the shape of the probability weighting function, Cognitive Psychology, 38 (1999), 129166. doi: 10.1006/cogp.1998.0710. 
[16] 
X. D. He, R. Kouwenberg and X. Y. Zhou, Rankdependent utility and risk taking in complete markets, SIAM Journal on Financial Mathematics, 8 (2017), 214239. doi: 10.1137/16M1072516. 
[17] 
X. D. He and X. Y. Zhou, Portfolio choice under cumulative prospect theory: An analytical treatment, Management Science, 57 (2011), 315331. 
[18] 
D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 263291. doi: 10.21236/ADA045771. 
[19] 
D. Kramkov and W. Schachermayer, The asymptotic elasticity of utility functions and optimal investment in incomplete markets, Annals of Applied Probability, 9 (1999), 904950. doi: 10.1214/aoap/1029962818. 
[20] 
A. Kumar, Who gambles in the stock market?, Journal of Finance, 64 (2009), 18891933. doi: 10.1111/j.15406261.2009.01483.x. 
[21] 
P. K. Lattimore, J. R. Baker and A. D. Witte, Influence of probability on risky choice: A parametric examination, Journal of Economic Behavior and Organization, 17 (1992), 377400. 
[22] 
C. Low, D. Pachamanova and M. Sim, Skewnessaware asset allocation: A new theoretical framework and empirical evidence, Mathematical Finance, 22 (2012), 379410. doi: 10.1111/j.14679965.2010.00463.x. 
[23] 
I. P. Natanson, Theory of Functions of a Real Variable, vol. 1, Frederick Ungar, New York, 1955. 
[24] 
V. Polkovnichenko, Household portfolio diversification: A case for rankdependent preferences, Review of Financial Studies, 18 (2005), 14671502. 
[25] 
A. Tversky and C. R. Fox, Weighing risk and uncertainty, Psychological Review, 102 (1995), 269283. doi: 10.1037/0033295X.102.2.269. 
[26] 
A. Tversky and D. Kahneman, Advances in prospect theory: Cumulative representation of uncertainty, Journal of Risk and Uncertainty, 5 (1992), 297323. doi: 10.1007/9783319204512_24. 
[1] 
Rolando Mosquera, Aziz Hamdouni, Abdallah El Hamidi, Cyrille Allery. POD basis interpolation via Inverse Distance Weighting on Grassmann manifolds. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 17431759. doi: 10.3934/dcdss.2019115 
[2] 
Shuang Li, Chuong Luong, Francisca Angkola, Yonghong Wu. Optimal asset portfolio with stochastic volatility under the meanvariance utility with statedependent risk aversion. Journal of Industrial & Management Optimization, 2016, 12 (4) : 15211533. doi: 10.3934/jimo.2016.12.1521 
[3] 
Tzungshin Yeh. Sshaped and broken sshaped bifurcation curves for a multiparameter diffusive logistic problem with holling typeⅢ functional response. Communications on Pure & Applied Analysis, 2017, 16 (2) : 645670. doi: 10.3934/cpaa.2017032 
[4] 
Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. A twoechelon inventory model with stockdependent demand and variable holding cost for deteriorating items. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 2150. doi: 10.3934/naco.2017002 
[5] 
ShaoYuan Huang, ShinHwa Wang. On Sshaped bifurcation curves for a twopoint boundary value problem arising in a theory of thermal explosion. Discrete & Continuous Dynamical Systems  A, 2015, 35 (10) : 48394858. doi: 10.3934/dcds.2015.35.4839 
[6] 
Sabri Bensid, Jesús Ildefonso Díaz. Stability results for discontinuous nonlinear elliptic and parabolic problems with a Sshaped bifurcation branch of stationary solutions. Discrete & Continuous Dynamical Systems  B, 2017, 22 (5) : 17571778. doi: 10.3934/dcdsb.2017105 
[7] 
ChihYuan Chen, ShinHwa Wang, KuoChih Hung. Sshaped bifurcation curves for a combustion problem with general arrhenius reactionrate laws. Communications on Pure & Applied Analysis, 2014, 13 (6) : 25892608. doi: 10.3934/cpaa.2014.13.2589 
[8] 
Lv Chen, Hailiang Yang. Optimal reinsurance and investment strategy with two piece utility function. Journal of Industrial & Management Optimization, 2017, 13 (2) : 737755. doi: 10.3934/jimo.2016044 
[9] 
Yanqin Bai, Yudan Wei, Qian Li. An optimal tradeoff model for portfolio selection with sensitivity of parameters. Journal of Industrial & Management Optimization, 2017, 13 (2) : 947965. doi: 10.3934/jimo.2016055 
[10] 
Yan Zeng, Zhongfei Li, Jingjun Liu. Optimal strategies of benchmark and meanvariance portfolio selection problems for insurers. Journal of Industrial & Management Optimization, 2010, 6 (3) : 483496. doi: 10.3934/jimo.2010.6.483 
[11] 
Xianping Wu, Xun Li, Zhongfei Li. A meanfield formulation for multiperiod assetliability meanvariance portfolio selection with probability constraints. Journal of Industrial & Management Optimization, 2018, 14 (1) : 249265. doi: 10.3934/jimo.2017045 
[12] 
Tomasz Downarowicz, Yonatan Gutman, Dawid Huczek. Rank as a function of measure. Discrete & Continuous Dynamical Systems  A, 2014, 34 (7) : 27412750. doi: 10.3934/dcds.2014.34.2741 
[13] 
Ali Moussaoui, Pierre Auger, Christophe Lett. Optimal number of sites in multisite fisheries with fish stock dependent migrations. Mathematical Biosciences & Engineering, 2011, 8 (3) : 769783. doi: 10.3934/mbe.2011.8.769 
[14] 
Ellina Grigorieva, Evgenii Khailov. Optimal control of pollution stock. Conference Publications, 2011, 2011 (Special) : 578588. doi: 10.3934/proc.2011.2011.578 
[15] 
Ke Ruan, Masao Fukushima. Robust portfolio selection with a combined WCVaR and factor model. Journal of Industrial & Management Optimization, 2012, 8 (2) : 343362. doi: 10.3934/jimo.2012.8.343 
[16] 
Hanqing Jin, Xun Yu Zhou. Continuoustime portfolio selection under ambiguity. Mathematical Control & Related Fields, 2015, 5 (3) : 475488. doi: 10.3934/mcrf.2015.5.475 
[17] 
Xueting Cui, Xiaoling Sun, Dan Sha. An empirical study on discrete optimization models for portfolio selection. Journal of Industrial & Management Optimization, 2009, 5 (1) : 3346. doi: 10.3934/jimo.2009.5.33 
[18] 
Li Xue, Hao Di. Uncertain portfolio selection with mental accounts and background risk. Journal of Industrial & Management Optimization, 2017, 13 (5) : 122. doi: 10.3934/jimo.2018124 
[19] 
Zhengyan Wang, Guanghua Xu, Peibiao Zhao, Zudi Lu. The optimal cash holding models for stochastic cash management of continuous time. Journal of Industrial & Management Optimization, 2018, 14 (1) : 117. doi: 10.3934/jimo.2017034 
[20] 
Alexander J. Zaslavski. Good programs in the RSS model without concavity of a utility function. Journal of Industrial & Management Optimization, 2006, 2 (4) : 399423. doi: 10.3934/jimo.2006.2.399 
2017 Impact Factor: 0.631
Tools
Metrics
Other articles
by authors
[Back to Top]