# American Institute of Mathematical Sciences

September  2018, 8(3&4): 583-605. doi: 10.3934/mcrf.2018024

## General boundary value problems of the Korteweg-de Vries equation on a bounded domain

 1 Departamento de Matemática, Universidade Federal de Pernambuco, Recife, Pernambuco 50740-545, Brazil 2 Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA 3 Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0025, USA 4 Yangtze Center of Mathematics, Sichuan University, Chengdu 610064, China

* Corresponding author: Bing-Yu Zhang

The paper is dedicated to Jiongmin Yong for his 60th birthday.
The authors thank anonymous referees for many helpful comments, corrections and suggestions

Received  March 2017 Revised  October 2017 Published  September 2018

In this paper we consider the initial boundary value problem of the Korteweg-de Vries equation posed on a finite interval
 $$$u_t+u_x+u_{xxx}+uu_x = 0, ~~~~~ u(x, 0) = φ(x), ~~~~~ 0 < x < L, \ t>0~~~~~(0.1)$$$
subject to the nonhomogeneous boundary conditions,
 $$$B_1u = h_1(t), ~~~~~B_2 u = h_2 (t), ~~~~~ B_3 u = h_3 (t) ~~~~~t>0~~~~~(0.2)$$$
where
 $B_i u = \sum\limits_{j = 0}^2 \left(a_{ij} \partial ^j_x u(0, t) + b_{ij}\partial ^j_x u(L, t)\right), ~~~~~i = 1, 2, 3,$
and
 $a_{ij}, \ b_{ij}$
(
 $j = 0, 1, 2$
and
 $i = 1, 2, 3$
) are real constants. Under some general assumptions imposed on the coefficients
 $a_{ij}, \ b_{ij}$
, the IBVP (0.1)-(0.2) is shown to be locally well-posed in the space
 $H^s (0, L)$
for any
 $s \ge 0$
with
 $φ ∈ H^s (0, L)$
and boundary values
 $h_j$
,
 $j = 1, 2, 3$
, belonging to some appropriate spaces with optimal regularity.
Citation: Roberto A. Capistrano-Filho, Shuming Sun, Bing-Yu Zhang. General boundary value problems of the Korteweg-de Vries equation on a bounded domain. Mathematical Control & Related Fields, 2018, 8 (3&4) : 583-605. doi: 10.3934/mcrf.2018024
##### References:

show all references

##### References:
 [1] Corentin Audiard. On the non-homogeneous boundary value problem for Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3861-3884. doi: 10.3934/dcds.2013.33.3861 [2] Shenghao Li, Min Chen, Bing-Yu Zhang. A non-homogeneous boundary value problem of the sixth order Boussinesq equation in a quarter plane. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2505-2525. doi: 10.3934/dcds.2018104 [3] Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61 [4] Vishal Vasan, Bernard Deconinck. Well-posedness of boundary-value problems for the linear Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3171-3188. doi: 10.3934/dcds.2013.33.3171 [5] Nassif Ghoussoub. Superposition of selfdual functionals in non-homogeneous boundary value problems and differential systems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 187-220. doi: 10.3934/dcds.2008.21.187 [6] Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763 [7] Elena Rossi. Well-posedness of general 1D initial boundary value problems for scalar balance laws. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3577-3608. doi: 10.3934/dcds.2019147 [8] Shitao Liu, Roberto Triggiani. Recovering damping and potential coefficients for an inverse non-homogeneous second-order hyperbolic problem via a localized Neumann boundary trace. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5217-5252. doi: 10.3934/dcds.2013.33.5217 [9] Alain Miranville, Costică Moroşanu. Analysis of an iterative scheme of fractional steps type associated to the nonlinear phase-field equation with non-homogeneous dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 537-556. doi: 10.3934/dcdss.2016011 [10] Fujun Zhou, Shangbin Cui. Well-posedness and stability of a multidimensional moving boundary problem modeling the growth of tumor cord. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 929-943. doi: 10.3934/dcds.2008.21.929 [11] Joachim Escher, Anca-Voichita Matioc. Well-posedness and stability analysis for a moving boundary problem modelling the growth of nonnecrotic tumors. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 573-596. doi: 10.3934/dcdsb.2011.15.573 [12] Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local well-posedness in low regularity of the MKDV equation with periodic boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1635-1654. doi: 10.3934/dcds.2010.28.1635 [13] Franck Boyer, Pierre Fabrie. Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 219-250. doi: 10.3934/dcdsb.2007.7.219 [14] María Anguiano, Francisco Javier Suárez-Grau. Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions. Networks & Heterogeneous Media, 2019, 14 (2) : 289-316. doi: 10.3934/nhm.2019012 [15] George Avalos, Pelin G. Geredeli, Justin T. Webster. Semigroup well-posedness of a linearized, compressible fluid with an elastic boundary. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1267-1295. doi: 10.3934/dcdsb.2018151 [16] Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387 [17] Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032 [18] Laurent Denis, Anis Matoussi, Jing Zhang. The obstacle problem for quasilinear stochastic PDEs with non-homogeneous operator. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5185-5202. doi: 10.3934/dcds.2015.35.5185 [19] Timur Akhunov. Local well-posedness of quasi-linear systems generalizing KdV. Communications on Pure & Applied Analysis, 2013, 12 (2) : 899-921. doi: 10.3934/cpaa.2013.12.899 [20] Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

2018 Impact Factor: 1.292