September 2018, 8(3&4): 501-508. doi: 10.3934/mcrf.2018020

Existence for nonlinear finite dimensional stochastic differential equations of subgradient type

Octav Mayer Institute of Mathematics of Romanian Academy, Iaşi, Romania

This paper is dedicated to Professor Jiongmin Yong on the occasion of his 60th birthday

Received  September 2017 Revised  January 2018 Published  September 2018

One proves via variational techniques the existence and uniqueness of a strong solution to the stochastic differential equation $dX+{\partial} {\varphi} (t,X)dt\ni \sum\limits^N_{i = 1}σ_i(X)d{β}_i,\ X(0) = x,$ where ${\partial}{\varphi} :{\mathbb{R}}^d\to2^{{\mathbb{R}}^d}$ is the subdifferential of a convex function ${\varphi}:{\mathbb{R}}^d\to{\mathbb{R}}$ and $σ_i∈ L({\mathbb{R}}^d,{\mathbb{R}}^d)$, $1≤ d<{∞}$.

Citation: Viorel Barbu. Existence for nonlinear finite dimensional stochastic differential equations of subgradient type. Mathematical Control & Related Fields, 2018, 8 (3&4) : 501-508. doi: 10.3934/mcrf.2018020
References:
[1]

V. Barbu, Nonlinear Differential Equations Of Monotone Type In Banach Spaces, Springer, 2010. doi: 10.1007/978-1-4419-5542-5.

[2]

V. Barbu, Optimal Control of Variational Inequalities, Pitman Advanced Publishing Program, Boston. London. Melbourne, 1984.

[3]

V. Barbu, A variational approach to stochastic nonlinear parabolic problems, J. Math. Annal. Appl., 384 (2011), 2-15. doi: 10.1016/j.jmaa.2010.07.016.

[4]

V. Barbu, Optimal control approach to nonlinear diffusion equations driven by Wiener noise, J. Optim. Theory Appl., 153 (2012), 1-26. doi: 10.1007/s10957-011-9946-8.

[5]

V. Barbu, A variational approach to nonlinear stochastic differential equations with linear multiplicative noise, to appear.

[6]

V. BarbuG. Da Prato and M. Röckner, Existence of strong solutions for stochastic porous media equations under general monotonicity conditions, Ann. Probab., 37 (2009), 428-452. doi: 10.1214/08-AOP408.

[7]

V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, Springer, 2012. doi: 10.1007/978-94-007-2247-7.

[8]

V. Barbu and M. Röckner, An operatorial approach to stochastic partial differential equations driven by linear multiplicataive noise, J. Eur. Math.Soc., 17 (2015), 1789-1815. doi: 10.4171/JEMS/545.

[9]

R. BuckdahnL. MaticiucE. Pardoux and A. Rǎşcanu, Stochastic variational inequalities on nonconvex domains, J. Diff. Equations, 259 (2015), 7332-7374. doi: 10.1016/j.jde.2015.08.023.

[10]

C. Prevot and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Math., 1905, Springer, 2007.

show all references

References:
[1]

V. Barbu, Nonlinear Differential Equations Of Monotone Type In Banach Spaces, Springer, 2010. doi: 10.1007/978-1-4419-5542-5.

[2]

V. Barbu, Optimal Control of Variational Inequalities, Pitman Advanced Publishing Program, Boston. London. Melbourne, 1984.

[3]

V. Barbu, A variational approach to stochastic nonlinear parabolic problems, J. Math. Annal. Appl., 384 (2011), 2-15. doi: 10.1016/j.jmaa.2010.07.016.

[4]

V. Barbu, Optimal control approach to nonlinear diffusion equations driven by Wiener noise, J. Optim. Theory Appl., 153 (2012), 1-26. doi: 10.1007/s10957-011-9946-8.

[5]

V. Barbu, A variational approach to nonlinear stochastic differential equations with linear multiplicative noise, to appear.

[6]

V. BarbuG. Da Prato and M. Röckner, Existence of strong solutions for stochastic porous media equations under general monotonicity conditions, Ann. Probab., 37 (2009), 428-452. doi: 10.1214/08-AOP408.

[7]

V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, Springer, 2012. doi: 10.1007/978-94-007-2247-7.

[8]

V. Barbu and M. Röckner, An operatorial approach to stochastic partial differential equations driven by linear multiplicataive noise, J. Eur. Math.Soc., 17 (2015), 1789-1815. doi: 10.4171/JEMS/545.

[9]

R. BuckdahnL. MaticiucE. Pardoux and A. Rǎşcanu, Stochastic variational inequalities on nonconvex domains, J. Diff. Equations, 259 (2015), 7332-7374. doi: 10.1016/j.jde.2015.08.023.

[10]

C. Prevot and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Math., 1905, Springer, 2007.

[1]

Nguyen Huy Chieu, Jen-Chih Yao. Subgradients of the optimal value function in a parametric discrete optimal control problem. Journal of Industrial & Management Optimization, 2010, 6 (2) : 401-410. doi: 10.3934/jimo.2010.6.401

[2]

Jingtao Shi, Juanjuan Xu, Huanshui Zhang. Stochastic recursive optimal control problem with time delay and applications. Mathematical Control & Related Fields, 2015, 5 (4) : 859-888. doi: 10.3934/mcrf.2015.5.859

[3]

Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967

[4]

Haiyang Wang, Zhen Wu. Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation. Mathematical Control & Related Fields, 2015, 5 (3) : 651-678. doi: 10.3934/mcrf.2015.5.651

[5]

Sie Long Kek, Kok Lay Teo, Mohd Ismail Abd Aziz. Filtering solution of nonlinear stochastic optimal control problem in discrete-time with model-reality differences. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 207-222. doi: 10.3934/naco.2012.2.207

[6]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[7]

Tijana Levajković, Hermann Mena, Amjad Tuffaha. The stochastic linear quadratic optimal control problem in Hilbert spaces: A polynomial chaos approach. Evolution Equations & Control Theory, 2016, 5 (1) : 105-134. doi: 10.3934/eect.2016.5.105

[8]

Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. An optimal control problem in HIV treatment. Conference Publications, 2013, 2013 (special) : 311-322. doi: 10.3934/proc.2013.2013.311

[9]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[10]

Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations & Control Theory, 2014, 3 (1) : 35-58. doi: 10.3934/eect.2014.3.35

[11]

Frédéric Legoll, William Minvielle. Variance reduction using antithetic variables for a nonlinear convex stochastic homogenization problem. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 1-27. doi: 10.3934/dcdss.2015.8.1

[12]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[13]

Chonghu Guan, Xun Li, Zuo Quan Xu, Fahuai Yi. A stochastic control problem and related free boundaries in finance. Mathematical Control & Related Fields, 2017, 7 (4) : 563-584. doi: 10.3934/mcrf.2017021

[14]

V.N. Malozemov, A.V. Omelchenko. On a discrete optimal control problem with an explicit solution. Journal of Industrial & Management Optimization, 2006, 2 (1) : 55-62. doi: 10.3934/jimo.2006.2.55

[15]

Urszula Ledzewicz, Heinz Schättler. Drug resistance in cancer chemotherapy as an optimal control problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 129-150. doi: 10.3934/dcdsb.2006.6.129

[16]

Akram Kheirabadi, Asadollah Mahmoudzadeh Vaziri, Sohrab Effati. Solving optimal control problem using Hermite wavelet. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 101-112. doi: 10.3934/naco.2019008

[17]

Yujing Wang, Changjun Yu, Kok Lay Teo. A new computational strategy for optimal control problem with a cost on changing control. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 339-364. doi: 10.3934/naco.2016016

[18]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

[19]

Hiroaki Morimoto. Optimal harvesting and planting control in stochastic logistic population models. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2545-2559. doi: 10.3934/dcdsb.2012.17.2545

[20]

Fulvia Confortola, Elisa Mastrogiacomo. Feedback optimal control for stochastic Volterra equations with completely monotone kernels. Mathematical Control & Related Fields, 2015, 5 (2) : 191-235. doi: 10.3934/mcrf.2015.5.191

2017 Impact Factor: 0.631

Metrics

  • PDF downloads (15)
  • HTML views (68)
  • Cited by (0)

Other articles
by authors

[Back to Top]