# American Institute of Mathematical Sciences

June 2018, 8(2): 383-395. doi: 10.3934/mcrf.2018015

## Asymptotic behavior of a Schrödinger equation under a constrained boundary feedback

 1 Department of Mathematics, Tianjin University of Commerce, Tianjin 300134, China 2 School of Mathematics, Tianjin University, Tianjin 300354, China

* Corresponding author: Dongyi Liu

Received  February 2016 Revised  March 2017 Published  March 2018

Fund Project: This research is supported by the Natural Science Foundation of China grant NSFC-61573252

Design of controller subject to a constraint for a Schrödinger equation is considered based on the energy functional of the system. Thus, the resulting closed-loop system is nonlinear and its well-posedness is proven by the nonlinear monotone operator theory and a complex form of the nonlinear Lax-Milgram theorem. The asymptotic stability and exponential stability of the system are discussed with the LaSalle invariance principle and Riesz basis method, respectively. In the end, a numerical simulation illustrates the feasibility of the suggested feedback control law.

Citation: Haoyue Cui, Dongyi Liu, Genqi Xu. Asymptotic behavior of a Schrödinger equation under a constrained boundary feedback. Mathematical Control & Related Fields, 2018, 8 (2) : 383-395. doi: 10.3934/mcrf.2018015
##### References:
 [1] M. Aassila, Exact controllability of the Schrödinger equation, Applied Mathematics and Computation, 144 (2003), 89-106. doi: 10.1016/S0096-3003(02)00394-6. [2] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd edition, Elsevier/Academic Press, Amsterdam, 2003. [3] I. Aksikas, J.J. Winkin and D. Dochain, Asymptotic stability of infinite-dimensional semilinear systems: Application to a nonisothermal reactor, Systems& Control Letters, 56 (2007), 122-132. doi: 10.1016/j.sysconle.2006.08.012. [4] B. d'Andréa-Novel and J.M. Coron, Exponential stabilization of an overhead crane with flexible cable via a back-stepping approach, Automatica, 36 (2000), 587-593. doi: 10.1016/S0005-1098(99)00182-X. [5] V. Barbu, Nonlinear Differential Equations of Monotone types in Banach Spaces, Springer New York Dordrecht Heidelberg London, 2010. [6] P. Bégout, Necessary conditions and sufficient conditions for global existence in the nonlinear Schrödinger equation, Advances in Mathematical Sciences and Applications, 12 (2002), 817-827. [7] P. Bégout, Maximum decay rate for the nonlinear Schrödinger equation, Nonlinear Differential Equations and Applications NoDEA, 11 (2004), 451-467. doi: 10.1007/s00030-004-2003-7. [8] T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Univerisity Press, New York, 1998. [9] C. Chen and D.S. Elliott, Measurements of optical phase variations using interfering multiphoton ionization processes, Physical Review Letters, 65 (1990), 1737-1740. doi: 10.1103/PhysRevLett.65.1737. [10] R. Cipolatti, E. Machtyngier and E. San Pedro Siqueira, Nonlinear boundary feedback stabilization for Schrödinger equations, Differential and Integral Equations, 9 (1996), 137-148. [11] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, A refined global well-posedness result for Schrödinger equations with derivative, SIAM Journal on Mathematical Analysis, 34 (2002), 64-86. doi: 10.1137/S0036141001394541. [12] C. M. Dafermos and M. Slemrod, Asymptotic behavior of nonlinear contraction semigroups, Journal of Functional Analysis, 13 (1973), 97-106. doi: 10.1016/0022-1236(73)90069-4. [13] P. Gross, D. Neuhauser and H. Rabitz, Teaching lasers to control molecules in the presence of laboratory field uncertainty and measurement imprecision, The Journal of Chemical Physics, 98 (1993), 4557-4566. doi: 10.1063/1.465017. [14] B. Guo and J. Liu, Sliding mode control and active disturbance rejection control to the stabilization of one-dimensional Schröinger equation subject to boundary control matched disturbance, International Journal of Robust and Nonlinear Control, 24 (2014), 2194-2212. doi: 10.1002/rnc.2977. [15] A. Haraux, Nonlinear Evolution Equations: Global Behavior of Solutions, Lecture Notes in Mathematics, Vol. 841, Springer-Verlag, New York, 1981. [16] W. He, X. He and S.S. Ge, Vibration Control of Flexible Marine Riser Systems with Input Saturation, IEEE/ASME Transactions on Mechatronics, 21 (2016), 254-265. doi: 10.1109/TMECH.2015.2431118. [17] T. Kato, Nonlinear semigroups and evolution equations, Journal of the Mathematical Society of Japan, 19 (1967), 493-507. doi: 10.2969/jmsj/01940508. [18] Y. Kōmura, Nonlinear semi-groups in Hilbert space, Journal of the Mathematical Society of Japan, 19 (1967), 493-507. doi: 10.2969/jmsj/01940493. [19] R. Kosloff, S. A. Rice, P. Gaspard, S. Tersigni and D. J. Tannor, Wavepacket dancing: Achieving chemical selectivity by shaping light pulses, Chemical Physics, 139 (1989), 201-220. doi: 10.1016/0301-0104(89)90012-8. [20] M. Guo and B. Kristic, Boundary controllers and observers for the linearized schrödinger equation, SIAM Journal on Control and Optimization, 49 (2011), 1479-1497. doi: 10.1137/070704290. [21] I. Lasiecka and T. Seidman, Strong stability of elastic control systems with dissipative saturating feedback, System and Control Letters, 48 (2003), 243-252. doi: 10.1016/S0167-6911(02)00269-4. [22] I. Lasiecka and R. Triggiani, Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet control, Differential and Integral Equations, 5 (1992), 521-535. [23] I. Lasiecka and R. Triggiani, Well-posedness and sharp uniform decay rates at the $L_2(\Omega)$-level of the Schrödinger equation with nonlinear boundary dissipation, Journal of Evolution Equations, 6 (2006), 485-537. doi: 10.1007/s00028-006-0267-6. [24] I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. Part Ⅰ: $H_1(\Omega)$-estimates, Journal of Inverse Ill-posed Problems, 12 (2004), 43-123. [25] I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. Part Ⅱ: $L_2(\Omega)$-estimates, Journal of Inverse and Ill-posed Problems, 12 (2004), 183-231. [26] Z. Liu, J. Liu and W. He, Partial differential equation boundary control of a flexible manipulator with input saturation, International Journal of Systems Science, 48 (2017), 53-62. doi: 10.1080/00207721.2016.1152416. [27] D. Liu, L. Zhang, Z. Han and G. Xu, Stabilization of the timoshenko beam system with restricted boundary feedback controls, Acta Applicandae Mathematicae, 141 (2016), 149-164. doi: 10.1007/s10440-015-0008-3. [28] E. Machtyngier and E. Zuazua, Stabilization of the Schrödinger equation, Portugaliae Mathematica, 51 (1994), 243-256. [29] E. Machtyngier, Exact controllability for the Schrödinger equation, SIAM Journal Control and Optimization, 32 (1994), 24-34. doi: 10.1137/S0363012991223145. [30] S. Nicaise and S. Rebiai, Stabilization of the Schrödinger equation with a delay term in boundary feedback or internal feedback, Portugaliae Mathematica, 68 (2011), 19-39. [31] N. H. Pavel, Nonlinear Evolution Operators and Semigroups, Springer-Verlag, Berlin, Heidelberg, 1987. [32] S. Shi, A. Woody and H. Rabitz, Optimal control of selective vibrational excitation in harmonic linear chain molecules, The Journal of Chemical Physics, 88 (1988), 6870-6883. doi: 10.1063/1.454384. [33] R. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations, American Mathematical Society, Providence, RI, 1997. [34] M. Slemrod, Feedback Stabilization of a Linear Control System in Hilbert Space with an a priori Bounded Control, Mathematics of Control, Signals and Systems, 2 (1989), 265-285. doi: 10.1007/BF02551387. [35] G. Xu and B. Guo, Riesz basis property of evolution equations in Hilbert spaces and application to a coupled string equation, SIAM Journal on Control and Optimization, 42 (2003), 966-984. doi: 10.1137/S0363012901400081. [36] G. Xu and D. Feng, The Riesz basis property of a Timoshenko beam with boundary feedback and application, IMA Journal of Applied Mathematics, 67 (2002), 357-370. doi: 10.1093/imamat/67.4.357. [37] E. Zeidler, Nonlinear Functional Analysis and Its Applications, II/B: Nonlinear Monotone Operators, Springer-Verlag, New York, 1990.

show all references

##### References:
 [1] M. Aassila, Exact controllability of the Schrödinger equation, Applied Mathematics and Computation, 144 (2003), 89-106. doi: 10.1016/S0096-3003(02)00394-6. [2] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd edition, Elsevier/Academic Press, Amsterdam, 2003. [3] I. Aksikas, J.J. Winkin and D. Dochain, Asymptotic stability of infinite-dimensional semilinear systems: Application to a nonisothermal reactor, Systems& Control Letters, 56 (2007), 122-132. doi: 10.1016/j.sysconle.2006.08.012. [4] B. d'Andréa-Novel and J.M. Coron, Exponential stabilization of an overhead crane with flexible cable via a back-stepping approach, Automatica, 36 (2000), 587-593. doi: 10.1016/S0005-1098(99)00182-X. [5] V. Barbu, Nonlinear Differential Equations of Monotone types in Banach Spaces, Springer New York Dordrecht Heidelberg London, 2010. [6] P. Bégout, Necessary conditions and sufficient conditions for global existence in the nonlinear Schrödinger equation, Advances in Mathematical Sciences and Applications, 12 (2002), 817-827. [7] P. Bégout, Maximum decay rate for the nonlinear Schrödinger equation, Nonlinear Differential Equations and Applications NoDEA, 11 (2004), 451-467. doi: 10.1007/s00030-004-2003-7. [8] T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Univerisity Press, New York, 1998. [9] C. Chen and D.S. Elliott, Measurements of optical phase variations using interfering multiphoton ionization processes, Physical Review Letters, 65 (1990), 1737-1740. doi: 10.1103/PhysRevLett.65.1737. [10] R. Cipolatti, E. Machtyngier and E. San Pedro Siqueira, Nonlinear boundary feedback stabilization for Schrödinger equations, Differential and Integral Equations, 9 (1996), 137-148. [11] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, A refined global well-posedness result for Schrödinger equations with derivative, SIAM Journal on Mathematical Analysis, 34 (2002), 64-86. doi: 10.1137/S0036141001394541. [12] C. M. Dafermos and M. Slemrod, Asymptotic behavior of nonlinear contraction semigroups, Journal of Functional Analysis, 13 (1973), 97-106. doi: 10.1016/0022-1236(73)90069-4. [13] P. Gross, D. Neuhauser and H. Rabitz, Teaching lasers to control molecules in the presence of laboratory field uncertainty and measurement imprecision, The Journal of Chemical Physics, 98 (1993), 4557-4566. doi: 10.1063/1.465017. [14] B. Guo and J. Liu, Sliding mode control and active disturbance rejection control to the stabilization of one-dimensional Schröinger equation subject to boundary control matched disturbance, International Journal of Robust and Nonlinear Control, 24 (2014), 2194-2212. doi: 10.1002/rnc.2977. [15] A. Haraux, Nonlinear Evolution Equations: Global Behavior of Solutions, Lecture Notes in Mathematics, Vol. 841, Springer-Verlag, New York, 1981. [16] W. He, X. He and S.S. Ge, Vibration Control of Flexible Marine Riser Systems with Input Saturation, IEEE/ASME Transactions on Mechatronics, 21 (2016), 254-265. doi: 10.1109/TMECH.2015.2431118. [17] T. Kato, Nonlinear semigroups and evolution equations, Journal of the Mathematical Society of Japan, 19 (1967), 493-507. doi: 10.2969/jmsj/01940508. [18] Y. Kōmura, Nonlinear semi-groups in Hilbert space, Journal of the Mathematical Society of Japan, 19 (1967), 493-507. doi: 10.2969/jmsj/01940493. [19] R. Kosloff, S. A. Rice, P. Gaspard, S. Tersigni and D. J. Tannor, Wavepacket dancing: Achieving chemical selectivity by shaping light pulses, Chemical Physics, 139 (1989), 201-220. doi: 10.1016/0301-0104(89)90012-8. [20] M. Guo and B. Kristic, Boundary controllers and observers for the linearized schrödinger equation, SIAM Journal on Control and Optimization, 49 (2011), 1479-1497. doi: 10.1137/070704290. [21] I. Lasiecka and T. Seidman, Strong stability of elastic control systems with dissipative saturating feedback, System and Control Letters, 48 (2003), 243-252. doi: 10.1016/S0167-6911(02)00269-4. [22] I. Lasiecka and R. Triggiani, Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet control, Differential and Integral Equations, 5 (1992), 521-535. [23] I. Lasiecka and R. Triggiani, Well-posedness and sharp uniform decay rates at the $L_2(\Omega)$-level of the Schrödinger equation with nonlinear boundary dissipation, Journal of Evolution Equations, 6 (2006), 485-537. doi: 10.1007/s00028-006-0267-6. [24] I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. Part Ⅰ: $H_1(\Omega)$-estimates, Journal of Inverse Ill-posed Problems, 12 (2004), 43-123. [25] I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. Part Ⅱ: $L_2(\Omega)$-estimates, Journal of Inverse and Ill-posed Problems, 12 (2004), 183-231. [26] Z. Liu, J. Liu and W. He, Partial differential equation boundary control of a flexible manipulator with input saturation, International Journal of Systems Science, 48 (2017), 53-62. doi: 10.1080/00207721.2016.1152416. [27] D. Liu, L. Zhang, Z. Han and G. Xu, Stabilization of the timoshenko beam system with restricted boundary feedback controls, Acta Applicandae Mathematicae, 141 (2016), 149-164. doi: 10.1007/s10440-015-0008-3. [28] E. Machtyngier and E. Zuazua, Stabilization of the Schrödinger equation, Portugaliae Mathematica, 51 (1994), 243-256. [29] E. Machtyngier, Exact controllability for the Schrödinger equation, SIAM Journal Control and Optimization, 32 (1994), 24-34. doi: 10.1137/S0363012991223145. [30] S. Nicaise and S. Rebiai, Stabilization of the Schrödinger equation with a delay term in boundary feedback or internal feedback, Portugaliae Mathematica, 68 (2011), 19-39. [31] N. H. Pavel, Nonlinear Evolution Operators and Semigroups, Springer-Verlag, Berlin, Heidelberg, 1987. [32] S. Shi, A. Woody and H. Rabitz, Optimal control of selective vibrational excitation in harmonic linear chain molecules, The Journal of Chemical Physics, 88 (1988), 6870-6883. doi: 10.1063/1.454384. [33] R. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations, American Mathematical Society, Providence, RI, 1997. [34] M. Slemrod, Feedback Stabilization of a Linear Control System in Hilbert Space with an a priori Bounded Control, Mathematics of Control, Signals and Systems, 2 (1989), 265-285. doi: 10.1007/BF02551387. [35] G. Xu and B. Guo, Riesz basis property of evolution equations in Hilbert spaces and application to a coupled string equation, SIAM Journal on Control and Optimization, 42 (2003), 966-984. doi: 10.1137/S0363012901400081. [36] G. Xu and D. Feng, The Riesz basis property of a Timoshenko beam with boundary feedback and application, IMA Journal of Applied Mathematics, 67 (2002), 357-370. doi: 10.1093/imamat/67.4.357. [37] E. Zeidler, Nonlinear Functional Analysis and Its Applications, II/B: Nonlinear Monotone Operators, Springer-Verlag, New York, 1990.
Real part of $w(x, t)$
Imaginary part of $w(x, t)$
Real and imaginary parts of $w(1, t)$
 [1] Joel Andersson, Leo Tzou. Stability for a magnetic Schrödinger operator on a Riemann surface with boundary. Inverse Problems & Imaging, 2018, 12 (1) : 1-28. doi: 10.3934/ipi.2018001 [2] Camille Laurent. Internal control of the Schrödinger equation. Mathematical Control & Related Fields, 2014, 4 (2) : 161-186. doi: 10.3934/mcrf.2014.4.161 [3] Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807 [4] Frank Wusterhausen. Schrödinger equation with noise on the boundary. Conference Publications, 2013, 2013 (special) : 791-796. doi: 10.3934/proc.2013.2013.791 [5] Leyter Potenciano-Machado, Alberto Ruiz. Stability estimates for a magnetic Schrödinger operator with partial data. Inverse Problems & Imaging, 2018, 12 (6) : 1309-1342. doi: 10.3934/ipi.2018055 [6] Peng Gao, Yong Li. Averaging principle for the Schrödinger equations†. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2147-2168. doi: 10.3934/dcdsb.2017089 [7] Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 [8] Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations & Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016 [9] Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063 [10] Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems & Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139 [11] Sombuddha Bhattacharyya. An inverse problem for the magnetic Schrödinger operator on Riemannian manifolds from partial boundary data. Inverse Problems & Imaging, 2018, 12 (3) : 801-830. doi: 10.3934/ipi.2018034 [12] Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305 [13] Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033 [14] Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469 [15] Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525 [16] François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229 [17] Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971 [18] Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043 [19] Alex H. Ardila. Stability of ground states for logarithmic Schrödinger equation with a $δ^{\prime}$-interaction. Evolution Equations & Control Theory, 2017, 6 (2) : 155-175. doi: 10.3934/eect.2017009 [20] Nguyen Dinh Cong, Roberta Fabbri. On the spectrum of the one-dimensional Schrödinger operator. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 541-554. doi: 10.3934/dcdsb.2008.9.541

2017 Impact Factor: 0.631

## Tools

Article outline

Figures and Tables