2018, 8(1): 337-381. doi: 10.3934/mcrf.2018014

Operator-valued backward stochastic Lyapunov equations in infinite dimensions, and its application

School of Mathematics, Sichuan University, Chengdu 610064, China

Received  May 2017 Revised  October 2017 Published  January 2018

We establish the well-posedness of operator-valued backward stochastic Lyapunov equations in infinite dimensions, in the sense of $ V $-transposition solution and of relaxed transposition solution. As an application, we obtain a Pontryagin-type maximum principle for the optimal control of controlled stochastic evolution equations.

Citation: Qi Lü, Xu Zhang. Operator-valued backward stochastic Lyapunov equations in infinite dimensions, and its application. Mathematical Control & Related Fields, 2018, 8 (1) : 337-381. doi: 10.3934/mcrf.2018014
References:
[1]

A. M. Bruckner, J. B. Bruckner and B. S. Thomson, Real Analysis, Prentice Hall (Pearson), Upper Saddle River, 1997.

[2]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.

[3]

K. Du and Q. Meng, A maximum principle for optimal control of stochastic evolution equations, SIAM J. Control Optim., 51 (2013), 4343-4362.

[4]

M. FuhrmanY. Hu and G. Tessitore, Stochastic maximum principle for optimal control of SPDEs, Appl. Math. Optim., 68 (2013), 181-217.

[5]

G. Guatteri and G. Tessitore, On the backward stochastic Riccati equation in infinite dimensions, SIAM J. Control Optim., 44 (2005), 159-194.

[6]

G. Guatteri and G. Tessitore, Well posedness of operator valued backward stochastic Riccati equations in infinite dimensional spaces, SIAM J. Control Optim., 52 (2014), 3776-3806.

[7]

K. Itô, Introduction to Probability Theory, Cambridge University Press, Cambridge, 1984.

[8]

R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. Vol. I. Elementary Theory, Graduate Studies in Mathematics, 15. American Mathematical Society, Providence, RI, 1997.

[9]

Q. Lü, Second order necessary conditions for optimal control problems of stochastic evolution equations, Proceedings of the 35th Chinese Control Conference, Chengdu, China, (2016), 2620-2625.

[10]

Q. LüJ. Yong and X. Zhang, Representation of Itô integrals by Lebesgue/Bochner integrals, J. Eur. Math. Soc, 14 (2012), 1795-1823.

[11]

Q. Lü, H. Zhang and X. Zhang, Second order optimality conditions for optimal control problems of stochastic evolution equations, Preprint.

[12]

Q. Lü and X. Zhang, Well-posedness of backward stochastic differential equations with general filtration, J. Differential Equations, 254 (2013), 3200-3227.

[13]

Q. Lü and X. Zhang, General Pontryagin-type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions, Springer Briefs in Mathematics, Springer, New York, 2014. (See also http://arXiv.org/abs/1204.3275)

[14]

Q. Lü and X. Zhang, Transposition method for backward stochastic evolution equations revisited, and its application, Math. Control Relat. Fields., 5 (2015), 529-555.

[15]

Q. Lü and X. Zhang, Optimal feedback for stochastic linear quadratic control and backward stochastic Riccati equations in infinite simensions, Preprint.

[16]

V. A. Rohlin, On the fundamental ideas of measure theory, in Amer. Math. Soc. Translation, 1952 (1952), 55 pp.

[17]

J. M. A. M. van NeervenM. C. Veraar and L. Weis, Stochastic integration in UMD Banach spaces, Ann. Probab., 35 (2007), 1438-1478.

[18]

J. M. A. M. van Neerven, γ-radonifying operators—a survey, The AMSI-ANU Workshop on Spectral Theory and Harmonic Analysis, 1-61. Proc. Centre Math. Appl. Austral. Nat. Univ., 44, Austral. Nat. Univ., Canberra, 2010.

show all references

References:
[1]

A. M. Bruckner, J. B. Bruckner and B. S. Thomson, Real Analysis, Prentice Hall (Pearson), Upper Saddle River, 1997.

[2]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.

[3]

K. Du and Q. Meng, A maximum principle for optimal control of stochastic evolution equations, SIAM J. Control Optim., 51 (2013), 4343-4362.

[4]

M. FuhrmanY. Hu and G. Tessitore, Stochastic maximum principle for optimal control of SPDEs, Appl. Math. Optim., 68 (2013), 181-217.

[5]

G. Guatteri and G. Tessitore, On the backward stochastic Riccati equation in infinite dimensions, SIAM J. Control Optim., 44 (2005), 159-194.

[6]

G. Guatteri and G. Tessitore, Well posedness of operator valued backward stochastic Riccati equations in infinite dimensional spaces, SIAM J. Control Optim., 52 (2014), 3776-3806.

[7]

K. Itô, Introduction to Probability Theory, Cambridge University Press, Cambridge, 1984.

[8]

R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. Vol. I. Elementary Theory, Graduate Studies in Mathematics, 15. American Mathematical Society, Providence, RI, 1997.

[9]

Q. Lü, Second order necessary conditions for optimal control problems of stochastic evolution equations, Proceedings of the 35th Chinese Control Conference, Chengdu, China, (2016), 2620-2625.

[10]

Q. LüJ. Yong and X. Zhang, Representation of Itô integrals by Lebesgue/Bochner integrals, J. Eur. Math. Soc, 14 (2012), 1795-1823.

[11]

Q. Lü, H. Zhang and X. Zhang, Second order optimality conditions for optimal control problems of stochastic evolution equations, Preprint.

[12]

Q. Lü and X. Zhang, Well-posedness of backward stochastic differential equations with general filtration, J. Differential Equations, 254 (2013), 3200-3227.

[13]

Q. Lü and X. Zhang, General Pontryagin-type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions, Springer Briefs in Mathematics, Springer, New York, 2014. (See also http://arXiv.org/abs/1204.3275)

[14]

Q. Lü and X. Zhang, Transposition method for backward stochastic evolution equations revisited, and its application, Math. Control Relat. Fields., 5 (2015), 529-555.

[15]

Q. Lü and X. Zhang, Optimal feedback for stochastic linear quadratic control and backward stochastic Riccati equations in infinite simensions, Preprint.

[16]

V. A. Rohlin, On the fundamental ideas of measure theory, in Amer. Math. Soc. Translation, 1952 (1952), 55 pp.

[17]

J. M. A. M. van NeervenM. C. Veraar and L. Weis, Stochastic integration in UMD Banach spaces, Ann. Probab., 35 (2007), 1438-1478.

[18]

J. M. A. M. van Neerven, γ-radonifying operators—a survey, The AMSI-ANU Workshop on Spectral Theory and Harmonic Analysis, 1-61. Proc. Centre Math. Appl. Austral. Nat. Univ., 44, Austral. Nat. Univ., Canberra, 2010.

[1]

Theodore Tachim Medjo. Pullback \begin{document}$ \mathbb{V}-$\end{document}attractor of a three dimensional globally modified two-phase flow model. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2141-2169. doi: 10.3934/dcds.2018088

[2]

Diego Maldonado. On interior \begin{document} $C^2$ \end{document}-estimates for the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058

[3]

Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of \begin{document}$n\times n$\end{document} \begin{document}$p$\end{document}-Laplacian system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062

[4]

Qi Lü, Xu Zhang. Transposition method for backward stochastic evolution equations revisited, and its application. Mathematical Control & Related Fields, 2015, 5 (3) : 529-555. doi: 10.3934/mcrf.2015.5.529

[5]

Vladimir Chepyzhov, Alexei Ilyin, Sergey Zelik. Strong trajectory and global \begin{document} $\mathbf{W^{1,p}}$ \end{document}-attractors for the damped-driven Euler system in \begin{document} $\mathbb R^2$ \end{document}. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1835-1855. doi: 10.3934/dcdsb.2017109

[6]

Karina Samvelyan, Frol Zapolsky. Rigidity of the \begin{document}${{L}^{p}}$\end{document}-norm of the Poisson bracket on surfaces. Electronic Research Announcements, 2017, 24: 28-37. doi: 10.3934/era.2017.24.004

[7]

Yong Xia, Ruey-Lin Sheu, Shu-Cherng Fang, Wenxun Xing. Double well potential function and its optimization in the \begin{document}$N$\end{document} -dimensional real space-part Ⅱ. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1307-1328. doi: 10.3934/jimo.2016074

[8]

Shu-Cherng Fang, David Y. Gao, Gang-Xuan Lin, Ruey-Lin Sheu, Wenxun Xing. Double well potential function and its optimization in the \begin{document}$N$\end{document} -dimensional real space-part Ⅰ. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1291-1305. doi: 10.3934/jimo.2016073

[9]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with \begin{document}$ p(x) $\end{document}-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[10]

Sanjiban Santra. On the positive solutions for a perturbed negative exponent problem on \begin{document} $\mathbb{R}^3$ \end{document}. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1441-1460. doi: 10.3934/dcds.2018059

[11]

Qianying Xiao, Zuohuan Zheng. \begin{document}$C^1$\end{document} weak Palis conjecture for nonsingular flows. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1809-1832. doi: 10.3934/dcds.2018074

[12]

Juntao Sun, Tsung-Fang Wu, Zhaosheng Feng. Non-autonomous Schrödinger-Poisson system in \begin{document} $\mathbb{R}^{3}$\end{document}. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1889-1933. doi: 10.3934/dcds.2018077

[13]

Lin Du, Yun Zhang. \begin{document}$\mathcal{H}_∞$\end{document} filtering for switched nonlinear systems: A state projection method. Journal of Industrial & Management Optimization, 2018, 14 (1) : 19-33. doi: 10.3934/jimo.2017035

[14]

Renato Huzak. Cyclicity of degenerate graphic \begin{document}$DF_{2a}$\end{document} of Dumortier-Roussarie-Rousseau program. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1305-1316. doi: 10.3934/cpaa.2018063

[15]

James Tanis. Exponential multiple mixing for some partially hyperbolic flows on products of \begin{document}$ {\rm{PSL}}(2, \mathbb{R})$\end{document}. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 989-1006. doi: 10.3934/dcds.2018042

[16]

Hideaki Takagi. Times until service completion and abandonment in an M/M/\begin{document}$ m$\end{document} preemptive-resume LCFS queue with impatient customers. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-26. doi: 10.3934/jimo.2018028

[17]

Wenqiang Zhao. Random dynamics of non-autonomous semi-linear degenerate parabolic equations on \begin{document} $\mathbb{R}^N$ \end{document} driven by an unbounded additive noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2018065

[18]

Karim Samei, Arezoo Soufi. Quadratic residue codes over \begin{document} $\mathbb{F}_{p^r}+{u_1}\mathbb{F}_{p^r}+{u_2}\mathbb{F}_{p^r}+...+{u_t}\mathbb{F}_ {p^r}$ \end{document}. Advances in Mathematics of Communications, 2017, 11 (4) : 791-804. doi: 10.3934/amc.2017058

[19]

Yury Arlinskiĭ, Eduard Tsekanovskiĭ. Constant J-unitary factor and operator-valued transfer functions. Conference Publications, 2003, 2003 (Special) : 48-56. doi: 10.3934/proc.2003.2003.48

[20]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

2017 Impact Factor: 0.542

Metrics

  • PDF downloads (20)
  • HTML views (55)
  • Cited by (0)

Other articles
by authors

[Back to Top]