March 2018, 8(1): 217-245. doi: 10.3934/mcrf.2018010

Error estimates for Dirichlet control problems in polygonal domains: Quasi-uniform meshes

1. 

Institut für Mathematik und Bauinformatik, Universität der Bundeswehr München, 85577 Neubiberg, Germany

2. 

Departamento de Matemáticas, Universidad de Oviedo, 33203 Gijón, Spain

3. 

Lehrstuhl für Optimalsteuerung, Technische Universität München, 85748 Garching bei München, Germany

4. 

Fakultät für Mathematik, Universtät Duisburg-Essen, D-45127 Essen, Germany

* Corresponding author: Mariano Mateos

Received  April 2017 Revised  September 2017 Published  January 2018

Fund Project: The project was supported by DFG through the International Research Training Group IGDK 1754 Optimization and Numerical Analysis for Partial Differential Equations with Nonsmooth Structures.
The second author was partially supported by the Spanish Ministerio Español de Economía y Competitividad under research projects MTM2014-57531-P and MTM2017-83185-P

The paper deals with finite element approximations of elliptic Dirichlet boundary control problems posed on two-dimensional polygonal domains. Error estimates are derived for the approximation of the control and the state variables. Special features of unconstrained and control constrained problems as well as general quasi-uniform meshes and superconvergent meshes are carefully elaborated. Compared to existing results, the convergence rates for the control variable are not only improved but also fully explain the observed orders of convergence in the literature. Moreover, for the first time, results in nonconvex domains are provided.

Citation: Thomas Apel, Mariano Mateos, Johannes Pfefferer, Arnd Rösch. Error estimates for Dirichlet control problems in polygonal domains: Quasi-uniform meshes. Mathematical Control & Related Fields, 2018, 8 (1) : 217-245. doi: 10.3934/mcrf.2018010
References:
[1]

T. ApelM. MateosJ. Pfefferer and A. Rösch, On the regularity of the solutions of Dirichlet optimal control problems in polygonal domains, SIAM J. Control Optim., 53 (2015), 3620-3641. doi: 10.1137/140994186.

[2]

T. ApelS. Nicaise and J. Pfefferer, Discretization of the Poisson equation with non-smooth data and emphasis on non-convex domains, Numer. Methods Partial Differential Equations, 32 (2016), 1433-1454. doi: 10.1002/num.22057.

[3]

T. ApelJ. Pfefferer and A. Rösch, Finite element error estimates on the boundary with application to optimal control, Mathematics of Computation, 84 (2015), 33-70. doi: 10.1090/S0025-5718-2014-02862-7.

[4]

C. BacutaJ. Bramble and J. Xu, Regularity estimates for elliptic boundary value problems in Besov spaces, Mathematics of Computation, 72 (2003), 1577-1595. doi: 10.1090/S0025-5718-02-01502-8.

[5]

R. Bank and J. Xu, Asymptotically exact a posteriori error estimators, part Ⅰ: Grids with superconvergence, SIAM Journal on Numerical Analysis, 41 (2003), 2294-2312. doi: 10.1137/S003614290139874X.

[6]

S. BartelsC. Carstensen and G. Dolzmann, Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis, Numerische Mathematik, 99 (2004), 1-24. doi: 10.1007/s00211-004-0548-3.

[7]

M. Berggren, Approximations of very weak solutions to boundary-value problems, SIAM J. Numer. Anal., 42 (2004), 860-877 (electronic). doi: 10.1137/S0036142903382048.

[8]

E. Casas and J.-P. Raymond, Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations, SIAM J. Control Optim., 45 (2006), 1586-1611 (electronic). doi: 10.1137/050626600.

[9]

E. Casas and F. Tröltzsch, Error estimates for linear-quadratic elliptic control problems, in Analysis and Optimization of Differential Systems, Springer, 2003, 89-100.

[10]

P. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis (eds. P. Ciarlet and J. Lions), vol. Ⅱ. Finite Element Methods (Part 1), North-Holland, 1991, 17-352.

[11]

M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results, SIAM J. Math. Anal., 19 (1988), 613-626. doi: 10.1137/0519043.

[12]

K. DeckelnickA. Günther and M. Hinze, Finite element approximation of Dirichlet boundary control for elliptic PDEs on two-and three-dimensional curved domains, SIAM J. Control Optim., 48 (2009), 2798-2819. doi: 10.1137/080735369.

[13]

A. DemlowD. LeykekhmanA. Schatz and L. Wahlbin, Best approximation property in the w1 norm for finite element methods on graded meshes, Mathematics of Computation, 81 (2012), 743-764. doi: 10.1090/S0025-5718-2011-02546-9.

[14]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, vol. 24 of Monographs and Studies in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1985.

[15]

T. HorgerJ. Melenk and B. Wohlmuth, On optimal L2-and surface flux convergence in FEM, Computing and Visualization in Science, 16 (2013), 231-246. doi: 10.1007/s00791-015-0237-z.

[16]

M. Mateos, Optimization methods for Dirichlet control problems, to appear in Optimization, https://arXiv.org/abs/1701.07619.

[17]

M. Mateos and I. Neitzel, Dirichlet control of elliptic state constrained problems, Comput. Optim. Appl., 63 (2016), 825-853. doi: 10.1007/s10589-015-9784-y.

[18]

S. MayR. Rannacher and B. Vexler, Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems, SIAM Journal on Control and Optimization, 51 (2013), 2585-2611. doi: 10.1137/080735734.

[19]

J. Melenk and B. Wohlmuth, Quasi-optimal approximation of surface based lagrange multipliers in finite element methods, SIAM Journal on Numerical Analysis, 50 (2012), 2064-2087. doi: 10.1137/110832999.

[20]

S. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries, vol. 13 of De Gruyter Expositions in Mathematics, Walter de Gruyter & Co., Berlin, 1994. doi: 10.1515/9783110848915.525.

[21]

J. Nečas, Direct Methods in the Theory of Elliptic Equations, Corrected 2nd edition, Monographs and Studies in Mathematics, Springer Berlin Heidelberg, 2012.

[22]

J. Pfefferer, Numerical analysis for elliptic Neumann boundary control problems on polygonal domains, PhD Thesis, Universität der Bundeswehr München, 2014, http://athene.bibl.unibw-muenchen.de:8081/node?id=92055.

[23]

R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximations, Mathematics of Computation, 38 (1982), 437-445. doi: 10.1090/S0025-5718-1982-0645661-4.

show all references

References:
[1]

T. ApelM. MateosJ. Pfefferer and A. Rösch, On the regularity of the solutions of Dirichlet optimal control problems in polygonal domains, SIAM J. Control Optim., 53 (2015), 3620-3641. doi: 10.1137/140994186.

[2]

T. ApelS. Nicaise and J. Pfefferer, Discretization of the Poisson equation with non-smooth data and emphasis on non-convex domains, Numer. Methods Partial Differential Equations, 32 (2016), 1433-1454. doi: 10.1002/num.22057.

[3]

T. ApelJ. Pfefferer and A. Rösch, Finite element error estimates on the boundary with application to optimal control, Mathematics of Computation, 84 (2015), 33-70. doi: 10.1090/S0025-5718-2014-02862-7.

[4]

C. BacutaJ. Bramble and J. Xu, Regularity estimates for elliptic boundary value problems in Besov spaces, Mathematics of Computation, 72 (2003), 1577-1595. doi: 10.1090/S0025-5718-02-01502-8.

[5]

R. Bank and J. Xu, Asymptotically exact a posteriori error estimators, part Ⅰ: Grids with superconvergence, SIAM Journal on Numerical Analysis, 41 (2003), 2294-2312. doi: 10.1137/S003614290139874X.

[6]

S. BartelsC. Carstensen and G. Dolzmann, Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis, Numerische Mathematik, 99 (2004), 1-24. doi: 10.1007/s00211-004-0548-3.

[7]

M. Berggren, Approximations of very weak solutions to boundary-value problems, SIAM J. Numer. Anal., 42 (2004), 860-877 (electronic). doi: 10.1137/S0036142903382048.

[8]

E. Casas and J.-P. Raymond, Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations, SIAM J. Control Optim., 45 (2006), 1586-1611 (electronic). doi: 10.1137/050626600.

[9]

E. Casas and F. Tröltzsch, Error estimates for linear-quadratic elliptic control problems, in Analysis and Optimization of Differential Systems, Springer, 2003, 89-100.

[10]

P. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis (eds. P. Ciarlet and J. Lions), vol. Ⅱ. Finite Element Methods (Part 1), North-Holland, 1991, 17-352.

[11]

M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results, SIAM J. Math. Anal., 19 (1988), 613-626. doi: 10.1137/0519043.

[12]

K. DeckelnickA. Günther and M. Hinze, Finite element approximation of Dirichlet boundary control for elliptic PDEs on two-and three-dimensional curved domains, SIAM J. Control Optim., 48 (2009), 2798-2819. doi: 10.1137/080735369.

[13]

A. DemlowD. LeykekhmanA. Schatz and L. Wahlbin, Best approximation property in the w1 norm for finite element methods on graded meshes, Mathematics of Computation, 81 (2012), 743-764. doi: 10.1090/S0025-5718-2011-02546-9.

[14]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, vol. 24 of Monographs and Studies in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1985.

[15]

T. HorgerJ. Melenk and B. Wohlmuth, On optimal L2-and surface flux convergence in FEM, Computing and Visualization in Science, 16 (2013), 231-246. doi: 10.1007/s00791-015-0237-z.

[16]

M. Mateos, Optimization methods for Dirichlet control problems, to appear in Optimization, https://arXiv.org/abs/1701.07619.

[17]

M. Mateos and I. Neitzel, Dirichlet control of elliptic state constrained problems, Comput. Optim. Appl., 63 (2016), 825-853. doi: 10.1007/s10589-015-9784-y.

[18]

S. MayR. Rannacher and B. Vexler, Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems, SIAM Journal on Control and Optimization, 51 (2013), 2585-2611. doi: 10.1137/080735734.

[19]

J. Melenk and B. Wohlmuth, Quasi-optimal approximation of surface based lagrange multipliers in finite element methods, SIAM Journal on Numerical Analysis, 50 (2012), 2064-2087. doi: 10.1137/110832999.

[20]

S. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries, vol. 13 of De Gruyter Expositions in Mathematics, Walter de Gruyter & Co., Berlin, 1994. doi: 10.1515/9783110848915.525.

[21]

J. Nečas, Direct Methods in the Theory of Elliptic Equations, Corrected 2nd edition, Monographs and Studies in Mathematics, Springer Berlin Heidelberg, 2012.

[22]

J. Pfefferer, Numerical analysis for elliptic Neumann boundary control problems on polygonal domains, PhD Thesis, Universität der Bundeswehr München, 2014, http://athene.bibl.unibw-muenchen.de:8081/node?id=92055.

[23]

R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximations, Mathematics of Computation, 38 (1982), 437-445. doi: 10.1090/S0025-5718-1982-0645661-4.

Figure 6.  Constrained problems. Experimental orders of convergence vs biggest angle. Left: generic case. Right: worst case.
Figure 1.  Convergence rates depending on the maximal interior angle in the unconstrained case
Figure 2.  Convergence rates depending on the maximal interior angle in the constrained case
Figure 3.  Family of quasi-uniform meshes which is not $O(h^2)$-irregular
Figure 4.  Family of quasi-uniform $O(h^2)$-irregular meshes
Figure 5.  Unconstrained problems. Experimental orders of convergence vs biggest angle.
[1]

Tianliang Hou, Yanping Chen. Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements. Journal of Industrial & Management Optimization, 2013, 9 (3) : 631-642. doi: 10.3934/jimo.2013.9.631

[2]

Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473

[3]

Luca Di Persio, Giacomo Ziglio. Gaussian estimates on networks with applications to optimal control. Networks & Heterogeneous Media, 2011, 6 (2) : 279-296. doi: 10.3934/nhm.2011.6.279

[4]

Simone Göttlich, Patrick Schindler. Optimal inflow control of production systems with finite buffers. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 107-127. doi: 10.3934/dcdsb.2015.20.107

[5]

Philip Trautmann, Boris Vexler, Alexander Zlotnik. Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients. Mathematical Control & Related Fields, 2018, 8 (2) : 411-449. doi: 10.3934/mcrf.2018017

[6]

Ahmad Ahmad Ali, Klaus Deckelnick, Michael Hinze. Error analysis for global minima of semilinear optimal control problems. Mathematical Control & Related Fields, 2018, 8 (1) : 195-215. doi: 10.3934/mcrf.2018009

[7]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[8]

Ciro D’Apice, Umberto De Maio, Peter I. Kogut. Boundary velocity suboptimal control of incompressible flow in cylindrically perforated domain. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 283-314. doi: 10.3934/dcdsb.2009.11.283

[9]

Chunjuan Hou, Yanping Chen, Zuliang Lu. Superconvergence property of finite element methods for parabolic optimal control problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 927-945. doi: 10.3934/jimo.2011.7.927

[10]

Fabio Bagagiolo. Optimal control of finite horizon type for a multidimensional delayed switching system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 239-264. doi: 10.3934/dcdsb.2005.5.239

[11]

Gang Chen, Zaiming Liu, Jinbiao Wu. Optimal threshold control of a retrial queueing system with finite buffer. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1537-1552. doi: 10.3934/jimo.2017006

[12]

Divya Thakur, Belinda Marchand. Hybrid optimal control for HIV multi-drug therapies: A finite set control transcription approach. Mathematical Biosciences & Engineering, 2012, 9 (4) : 899-914. doi: 10.3934/mbe.2012.9.899

[13]

Ellina Grigorieva, Evgenii Khailov. Optimal control of pollution stock. Conference Publications, 2011, 2011 (Special) : 578-588. doi: 10.3934/proc.2011.2011.578

[14]

Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967

[15]

Thalya Burden, Jon Ernstberger, K. Renee Fister. Optimal control applied to immunotherapy. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 135-146. doi: 10.3934/dcdsb.2004.4.135

[16]

John B. Little. The ubiquity of order domains for the construction of error control codes. Advances in Mathematics of Communications, 2007, 1 (1) : 151-171. doi: 10.3934/amc.2007.1.151

[17]

Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial & Management Optimization, 2014, 10 (1) : 275-309. doi: 10.3934/jimo.2014.10.275

[18]

Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 321-337. doi: 10.3934/mbe.2017021

[19]

Georg Vossen, Stefan Volkwein. Model reduction techniques with a-posteriori error analysis for linear-quadratic optimal control problems. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 465-485. doi: 10.3934/naco.2012.2.465

[20]

Orazio Arena. On some boundary control problems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 613-618. doi: 10.3934/dcdss.2016015

2017 Impact Factor: 0.542

Metrics

  • PDF downloads (45)
  • HTML views (168)
  • Cited by (0)

[Back to Top]