• Previous Article
    Second order optimality conditions for optimal control of quasilinear parabolic equations
  • MCRF Home
  • This Issue
  • Next Article
    Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls
2018, 8(1): 35-56. doi: 10.3934/mcrf.2018002

Optimal voltage control of non-stationary eddy current problems

1. 

Institut für Mathematik, Technische Universität Berlin, D-10623 Berlin, Germany,

2. 

Dipartimento di Matematica, Università di Trento, 38123 Trento, Italy

* Corresponding author: Fredi Tröltzsch

Dedicated to Prof. Dr. Eduardo Casas on the occasion of his 60th birthday

Received  March 2017 Revised  September 2017 Published  January 2018

Fund Project: The first author was supported by Einstein Center for Mathematics Berlin (ECMath), project D-SE9. The second author is pleased to thank the Institute of Mathematics of the Technische Universität Berlin, the Research Center Matheon and the Einstein Center for Mathematics Berlin (ECMath) for their kind hospitality.

A mathematical model is set up that can be useful for controlled voltage excitation in time-dependent electromagnetism.The well-posedness of the model is proved and an associated optimal control problem is investigated. Here, the controlfunction is a transient voltage and the aim of the control is the best approximation of desired electric and magnetic fields insuitable $L^2$-norms.Special emphasis is laid on an adjoint calculus for first-order necessary optimality conditions.Moreover, a peculiar attention is devoted to propose a formulation for which the computational complexity of the finite element solution method is substantially reduced.

Citation: Fredi Tröltzsch, Alberto Valli. Optimal voltage control of non-stationary eddy current problems. Mathematical Control & Related Fields, 2018, 8 (1) : 35-56. doi: 10.3934/mcrf.2018002
References:
[1]

A. Alonso RodríguezE. BertolazziR. Ghiloni and A. Valli, Construction of a finite element basis of the first de Rham cohomology group and numerical solution of 3D magnetostatic problems, SIAM J. Numer. Anal., 51 (2013), 2380-2402.

[2]

A. Alonso RodríguezE. BertolazziR. Ghiloni and A. Valli, Finite element simulation of eddy current problems using magnetic scalar potentials, J. Comput. Phys., 294 (2015), 503-523.

[3]

A. Alonso Rodríguez and A. Valli, Eddy Current Approximation of Maxwell Equations, Springer-Verlag Italia, Milan, 2010.

[4]

L. Arnold and B. von Harrach, A unified variational formulation for the parabolic-elliptic eddy current equations, SIAM J. Appl. Math., 72 (2012), 558-576.

[5]

A. BermudezB. López RodríguezR. Rodríguez and P. Salgado, Numerical solution of transient eddy current problems with input current intensities as boundary data, IMA J. Numer. Anal., 32 (2012), 1001-1029.

[6]

V. Bommer and I. Yousept, Optimal control of the full time-dependent Maxwell equations, ESAIM Math. Model. Numer. Anal., 50 (2016), 237-261.

[7]

A. Bossavit, Most general 'non-local' boundary conditions for the Maxwell equations in a bounded region, COMPEL, 19 (2000), 239-245.

[8]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 5, Springer-Verlag, Berlin, 1992.

[9]

P. E. DruetO. KleinJ. SprekelsF. Tröltzsch and I. Yousept, Optimal control of three-dimensional state-constrained induction heating problems with nonlocal radiation effects, SIAM J. Control Optim., 49 (2011), 1707-1736.

[10]

R. Griesse and K. Kunisch, Optimal control for a stationary MHD system in velocity-current formulation, SIAM J. Control Optim., 45 (2006), 1822-1845.

[11]

M. Gunzburger and C. Trenchea, Analysis and discretization of an optimal control problem for the time-periodic MHD equations, J. Math. Anal. Appl., 308 (2005), 440-466.

[12]

M. Hinze, Control of weakly conductive fluids by near wall Lorentz forces, GAMM-Mitt., 30 (2007), 149-158.

[13]

D. Hömberg and J. Sokołowski, Optimal shape design of inductor coils for surface hardening, Numer. Funct. Anal. Optim., 42 (2003), 1087-1117.

[14]

D. Hömberg and S. Volkwein, Control of laser surface hardening by a reduced-order approach using proper orthogonal decomposition, Math. Comput. Modelling, 38 (2003), 1003-1028.

[15]

L. S. Hou and A. J. Meir, Boundary optimal control of MHD flows, Appl. Math. Optim., 32 (1995), 143-162.

[16]

L. S. Hou and S. S. Ravindran, Computations of boundary optimal control problems for an electrically conducting fluid, J. Comput. Phys., 128 (1996), 319-330.

[17]

M. Kolmbauer, The Multiharmonic Finite Element and Boundary Element Method for Simulation and Control of Eddy Current Problems, Ph.D thesis, Johannes Kepler University Linz, 2012.

[18]

M. Kolmbauer and U. Langer, A robust preconditioned MinRes solver for distributed time-periodic eddy current optimal control problems, SIAM J. Sci. Comput., 34 (2012), B785-B809.

[19]

P. Monk, Finite Element Methods for Maxwell's Equations, Oxford University Press, New York, 2003.

[20]

S. NicaiseS. Stingelin and F. Tröltzsch, On two optimal control problems for magnetic fields, Comput. Methods Appl. Math., 14 (2014), 555-573.

[21]

S. NicaiseS. Stingelin and F. Tröltzsch, Optimal control of magnetic fields in flow measurement, Discrete Contin. Dyn. Syst. Ser. S, 8 (2015), 579-605.

[22]

S. Nicaise and F. Tröltzsch, Optimal control of some quasilinear Maxwell equations of parabolic type, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 1375-1391.

[23]

S. S. Ravindran, Real-time computational algorithm for optimal control of an MHD flow system, SIAM J. Sci. Comput., 26 (2005), 1369-1388.

[24]

F. Tröltzsch and A. Valli, Modeling and control of low-frequency electromagnetic fields in multiply connected conductors, In System Modeling and Optimization (eds. L. Bociu, J.-A. Desideri, and A. Habbal), Springer, (2017), 505-516.

[25]

F. Tröltzsch and A. Valli, Optimal control of low-frequency electromagnetic fields in multiply connected conductors, Optimization, 65 (2016), 1651-1673.

[26]

I. Yousept, Optimal control of Maxwell's equations with regularized state constraints, Comput. Optim. Appl., 52 (2012), 559-581.

[27]

I. Yousept, Optimal bilinear control of eddy current equations with grad-div regularization, J. Numer. Math., 23 (2015), 81-98.

[28]

I. Yousept and F. Tröltzsch, PDE-constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages, ESAIM Math. Model. Numer. Anal., 46 (2012), 709-729.

show all references

References:
[1]

A. Alonso RodríguezE. BertolazziR. Ghiloni and A. Valli, Construction of a finite element basis of the first de Rham cohomology group and numerical solution of 3D magnetostatic problems, SIAM J. Numer. Anal., 51 (2013), 2380-2402.

[2]

A. Alonso RodríguezE. BertolazziR. Ghiloni and A. Valli, Finite element simulation of eddy current problems using magnetic scalar potentials, J. Comput. Phys., 294 (2015), 503-523.

[3]

A. Alonso Rodríguez and A. Valli, Eddy Current Approximation of Maxwell Equations, Springer-Verlag Italia, Milan, 2010.

[4]

L. Arnold and B. von Harrach, A unified variational formulation for the parabolic-elliptic eddy current equations, SIAM J. Appl. Math., 72 (2012), 558-576.

[5]

A. BermudezB. López RodríguezR. Rodríguez and P. Salgado, Numerical solution of transient eddy current problems with input current intensities as boundary data, IMA J. Numer. Anal., 32 (2012), 1001-1029.

[6]

V. Bommer and I. Yousept, Optimal control of the full time-dependent Maxwell equations, ESAIM Math. Model. Numer. Anal., 50 (2016), 237-261.

[7]

A. Bossavit, Most general 'non-local' boundary conditions for the Maxwell equations in a bounded region, COMPEL, 19 (2000), 239-245.

[8]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 5, Springer-Verlag, Berlin, 1992.

[9]

P. E. DruetO. KleinJ. SprekelsF. Tröltzsch and I. Yousept, Optimal control of three-dimensional state-constrained induction heating problems with nonlocal radiation effects, SIAM J. Control Optim., 49 (2011), 1707-1736.

[10]

R. Griesse and K. Kunisch, Optimal control for a stationary MHD system in velocity-current formulation, SIAM J. Control Optim., 45 (2006), 1822-1845.

[11]

M. Gunzburger and C. Trenchea, Analysis and discretization of an optimal control problem for the time-periodic MHD equations, J. Math. Anal. Appl., 308 (2005), 440-466.

[12]

M. Hinze, Control of weakly conductive fluids by near wall Lorentz forces, GAMM-Mitt., 30 (2007), 149-158.

[13]

D. Hömberg and J. Sokołowski, Optimal shape design of inductor coils for surface hardening, Numer. Funct. Anal. Optim., 42 (2003), 1087-1117.

[14]

D. Hömberg and S. Volkwein, Control of laser surface hardening by a reduced-order approach using proper orthogonal decomposition, Math. Comput. Modelling, 38 (2003), 1003-1028.

[15]

L. S. Hou and A. J. Meir, Boundary optimal control of MHD flows, Appl. Math. Optim., 32 (1995), 143-162.

[16]

L. S. Hou and S. S. Ravindran, Computations of boundary optimal control problems for an electrically conducting fluid, J. Comput. Phys., 128 (1996), 319-330.

[17]

M. Kolmbauer, The Multiharmonic Finite Element and Boundary Element Method for Simulation and Control of Eddy Current Problems, Ph.D thesis, Johannes Kepler University Linz, 2012.

[18]

M. Kolmbauer and U. Langer, A robust preconditioned MinRes solver for distributed time-periodic eddy current optimal control problems, SIAM J. Sci. Comput., 34 (2012), B785-B809.

[19]

P. Monk, Finite Element Methods for Maxwell's Equations, Oxford University Press, New York, 2003.

[20]

S. NicaiseS. Stingelin and F. Tröltzsch, On two optimal control problems for magnetic fields, Comput. Methods Appl. Math., 14 (2014), 555-573.

[21]

S. NicaiseS. Stingelin and F. Tröltzsch, Optimal control of magnetic fields in flow measurement, Discrete Contin. Dyn. Syst. Ser. S, 8 (2015), 579-605.

[22]

S. Nicaise and F. Tröltzsch, Optimal control of some quasilinear Maxwell equations of parabolic type, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 1375-1391.

[23]

S. S. Ravindran, Real-time computational algorithm for optimal control of an MHD flow system, SIAM J. Sci. Comput., 26 (2005), 1369-1388.

[24]

F. Tröltzsch and A. Valli, Modeling and control of low-frequency electromagnetic fields in multiply connected conductors, In System Modeling and Optimization (eds. L. Bociu, J.-A. Desideri, and A. Habbal), Springer, (2017), 505-516.

[25]

F. Tröltzsch and A. Valli, Optimal control of low-frequency electromagnetic fields in multiply connected conductors, Optimization, 65 (2016), 1651-1673.

[26]

I. Yousept, Optimal control of Maxwell's equations with regularized state constraints, Comput. Optim. Appl., 52 (2012), 559-581.

[27]

I. Yousept, Optimal bilinear control of eddy current equations with grad-div regularization, J. Numer. Math., 23 (2015), 81-98.

[28]

I. Yousept and F. Tröltzsch, PDE-constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages, ESAIM Math. Model. Numer. Anal., 46 (2012), 709-729.

Figure 1.  The computational domain $\Omega$ with the conductor $\Omega_C$ and the electric ports $\Gamma_E$ and $\Gamma_J$ .
Figure 2.  A first alternative geometrical configuration: a connected conductor $\Omega_C$ with five electric ports.
Figure 3.  A second alternative geometrical configuration: a non-connected conductor $\Omega_C$ with four electric ports.
Figure 4.  A third alternative geometrical configuration: a non-connected conductor $\Omega_C$ with two electric ports.
[1]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[2]

Ming Yan, Lili Chang, Ningning Yan. Finite element method for constrained optimal control problems governed by nonlinear elliptic PDEs. Mathematical Control & Related Fields, 2012, 2 (2) : 183-194. doi: 10.3934/mcrf.2012.2.183

[3]

Chunjuan Hou, Yanping Chen, Zuliang Lu. Superconvergence property of finite element methods for parabolic optimal control problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 927-945. doi: 10.3934/jimo.2011.7.927

[4]

Yuji Harata, Yoshihisa Banno, Kouichi Taji. Parametric excitation based bipedal walking: Control method and optimization. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 171-190. doi: 10.3934/naco.2011.1.171

[5]

Takeshi Fukao, Masahiro Kubo. Time-dependent obstacle problem in thermohydraulics. Conference Publications, 2009, 2009 (Special) : 240-249. doi: 10.3934/proc.2009.2009.240

[6]

Francesco Di Plinio, Gregory S. Duane, Roger Temam. Time-dependent attractor for the Oscillon equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 141-167. doi: 10.3934/dcds.2011.29.141

[7]

G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Time-dependent systems of generalized Young measures. Networks & Heterogeneous Media, 2007, 2 (1) : 1-36. doi: 10.3934/nhm.2007.2.1

[8]

Jin Takahashi, Eiji Yanagida. Time-dependent singularities in the heat equation. Communications on Pure & Applied Analysis, 2015, 14 (3) : 969-979. doi: 10.3934/cpaa.2015.14.969

[9]

Heung Wing Joseph Lee, Chi Kin Chan, Karho Yau, Kar Hung Wong, Colin Myburgh. Control parametrization and finite element method for controlling multi-species reactive transport in a circular pool. Journal of Industrial & Management Optimization, 2013, 9 (3) : 505-524. doi: 10.3934/jimo.2013.9.505

[10]

Michael Herty, Veronika Sachers. Adjoint calculus for optimization of gas networks. Networks & Heterogeneous Media, 2007, 2 (4) : 733-750. doi: 10.3934/nhm.2007.2.733

[11]

Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339

[12]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[13]

Eduardo Casas, Mariano Mateos, Arnd Rösch. Finite element approximation of sparse parabolic control problems. Mathematical Control & Related Fields, 2017, 7 (3) : 393-417. doi: 10.3934/mcrf.2017014

[14]

Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (5) : 875-900. doi: 10.3934/ipi.2017041

[15]

María Teresa Cao-Rial, Peregrina Quintela, Carlos Moreno. Numerical solution of a time-dependent Signorini contact problem. Conference Publications, 2007, 2007 (Special) : 201-211. doi: 10.3934/proc.2007.2007.201

[16]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[17]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Periodic solutions for time-dependent subdifferential evolution inclusions. Evolution Equations & Control Theory, 2017, 6 (2) : 277-297. doi: 10.3934/eect.2017015

[18]

Fengjuan Meng, Meihua Yang, Chengkui Zhong. Attractors for wave equations with nonlinear damping on time-dependent space. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 205-225. doi: 10.3934/dcdsb.2016.21.205

[19]

Jan Sokołowski, Jan Stebel. Shape optimization for non-Newtonian fluids in time-dependent domains. Evolution Equations & Control Theory, 2014, 3 (2) : 331-348. doi: 10.3934/eect.2014.3.331

[20]

Grzegorz Karch, Xiaoxin Zheng. Time-dependent singularities in the Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3039-3057. doi: 10.3934/dcds.2015.35.3039

2017 Impact Factor: 0.542

Metrics

  • PDF downloads (20)
  • HTML views (53)
  • Cited by (0)

Other articles
by authors

[Back to Top]