• Previous Article
    Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative
  • MCRF Home
  • This Issue
  • Next Article
    On the existence of optimal control for semilinear elliptic equations with nonlinear neumann boundary conditions
September  2017, 7(3): 465-491. doi: 10.3934/mcrf.2017017

Investment and consumption in regime-switching models with proportional transaction costs and log utility

1. 

School of Economics and Management, China Jiliang University, 258 Xueyuan Road, Hangzhou, Zhejiang 310018, China

2. 

Department of Mathematics, University of Dayton, 300 College Park, Dayton, OH 45469-2316, USA

* Corresponding author: Ruihua Liu

Received  August 2016 Revised  October 2016 Published  July 2017

A continuous-time and infinite-horizon optimal investment and consumption model with proportional transaction costs and regime-switching was considered in Liu [4]. A power utility function was specifically studied in [4]. This paper considers the case of log utility. Using a combination of viscosity solution to the Hamilton-Jacobi-Bellman (HJB) equation and convex analysis of the value function, we are able to derive the characterizations of the buy, sell and no-transaction regions that are regime-dependent. The results generalize Shreve and Soner [6] that deals with the same problem but without regime-switching.

Citation: Jiapeng Liu, Ruihua Liu, Dan Ren. Investment and consumption in regime-switching models with proportional transaction costs and log utility. Mathematical Control & Related Fields, 2017, 7 (3) : 465-491. doi: 10.3934/mcrf.2017017
References:
[1]

J. Buffington and R. J. Elliott, American options with regime switching, Int. J. Theor. Appl. Finance, 5 (2002), 497-514. doi: 10.1142/S0219024902001523.

[2]

M. G. CrandallH. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bulletin of the American Mathematical Society, 27 (1992), 1-67. doi: 10.1090/S0273-0979-1992-00266-5.

[3]

M. H. A. Davis and A. R. Norman, Portfolio selection with transaction costs, Mathematics of Operations Research, 15 (1990), 676-713. doi: 10.1287/moor.15.4.676.

[4]

R. H. Liu, Optimal investment and consumption with proportional transaction costs in regime-switching model, J Optim Theory Appl, 163 (2014), 614-641. doi: 10.1007/s10957-013-0445-y.

[5]

P. E. Protter, Stochastic Integration and Differential Equations, 2$^{nd}$ edition, Springer-Verlag, New York, 2005. doi: 10.1007/978-3-662-02619-9.

[6]

S. E. Shreve and H. M. Soner, Optimal investment and consumption with transaction costs, The Annals of Applied Probability, 4 (1994), 609-692. doi: 10.1214/aoap/1177004966.

[7]

R. TaoZ. Wu and Q. Zhang, Optimal switching under a regime-switching model with two-time-scale Markov chains, Multiscale Model. Simul., 13 (2015), 99-131. doi: 10.1137/130938967.

[8]

T. Zariphopoulou, Investment-consumption models with transaction fees and Markov-chain parameters, SIAM J. Control and Optimization, 30 (1992), 613-636. doi: 10.1137/0330035.

show all references

References:
[1]

J. Buffington and R. J. Elliott, American options with regime switching, Int. J. Theor. Appl. Finance, 5 (2002), 497-514. doi: 10.1142/S0219024902001523.

[2]

M. G. CrandallH. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bulletin of the American Mathematical Society, 27 (1992), 1-67. doi: 10.1090/S0273-0979-1992-00266-5.

[3]

M. H. A. Davis and A. R. Norman, Portfolio selection with transaction costs, Mathematics of Operations Research, 15 (1990), 676-713. doi: 10.1287/moor.15.4.676.

[4]

R. H. Liu, Optimal investment and consumption with proportional transaction costs in regime-switching model, J Optim Theory Appl, 163 (2014), 614-641. doi: 10.1007/s10957-013-0445-y.

[5]

P. E. Protter, Stochastic Integration and Differential Equations, 2$^{nd}$ edition, Springer-Verlag, New York, 2005. doi: 10.1007/978-3-662-02619-9.

[6]

S. E. Shreve and H. M. Soner, Optimal investment and consumption with transaction costs, The Annals of Applied Probability, 4 (1994), 609-692. doi: 10.1214/aoap/1177004966.

[7]

R. TaoZ. Wu and Q. Zhang, Optimal switching under a regime-switching model with two-time-scale Markov chains, Multiscale Model. Simul., 13 (2015), 99-131. doi: 10.1137/130938967.

[8]

T. Zariphopoulou, Investment-consumption models with transaction fees and Markov-chain parameters, SIAM J. Control and Optimization, 30 (1992), 613-636. doi: 10.1137/0330035.

[1]

Jean-Claude Zambrini. On the geometry of the Hamilton-Jacobi-Bellman equation. Journal of Geometric Mechanics, 2009, 1 (3) : 369-387. doi: 10.3934/jgm.2009.1.369

[2]

Steven Richardson, Song Wang. The viscosity approximation to the Hamilton-Jacobi-Bellman equation in optimal feedback control: Upper bounds for extended domains. Journal of Industrial & Management Optimization, 2010, 6 (1) : 161-175. doi: 10.3934/jimo.2010.6.161

[3]

Daniele Castorina, Annalisa Cesaroni, Luca Rossi. On a parabolic Hamilton-Jacobi-Bellman equation degenerating at the boundary. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1251-1263. doi: 10.3934/cpaa.2016.15.1251

[4]

Ka Chun Cheung, Hailiang Yang. Optimal investment-consumption strategy in a discrete-time model with regime switching. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 315-332. doi: 10.3934/dcdsb.2007.8.315

[5]

Min Dai, Zhou Yang. A note on finite horizon optimal investment and consumption with transaction costs. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1445-1454. doi: 10.3934/dcdsb.2016005

[6]

Chuancun Yin, Kam Chuen Yuen. Optimal dividend problems for a jump-diffusion model with capital injections and proportional transaction costs. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1247-1262. doi: 10.3934/jimo.2015.11.1247

[7]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

[8]

Yinghui Dong, Kam Chuen Yuen, Guojing Wang. Pricing credit derivatives under a correlated regime-switching hazard processes model. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1395-1415. doi: 10.3934/jimo.2016079

[9]

Jiaqin Wei, Zhuo Jin, Hailiang Yang. Optimal dividend policy with liability constraint under a hidden Markov regime-switching model. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-10. doi: 10.3934/jimo.2018132

[10]

Zuo Quan Xu, Fahuai Yi. An optimal consumption-investment model with constraint on consumption. Mathematical Control & Related Fields, 2016, 6 (3) : 517-534. doi: 10.3934/mcrf.2016014

[11]

Tak Kuen Siu, Yang Shen. Risk-minimizing pricing and Esscher transform in a general non-Markovian regime-switching jump-diffusion model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2595-2626. doi: 10.3934/dcdsb.2017100

[12]

Dingjun Yao, Hailiang Yang, Rongming Wang. Optimal financing and dividend strategies in a dual model with proportional costs. Journal of Industrial & Management Optimization, 2010, 6 (4) : 761-777. doi: 10.3934/jimo.2010.6.761

[13]

Fuke Wu, George Yin, Zhuo Jin. Kolmogorov-type systems with regime-switching jump diffusion perturbations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2293-2319. doi: 10.3934/dcdsb.2016048

[14]

Jiaqin Wei. Time-inconsistent optimal control problems with regime-switching. Mathematical Control & Related Fields, 2017, 7 (4) : 585-622. doi: 10.3934/mcrf.2017022

[15]

Zhuo Jin, Linyi Qian. Lookback option pricing for regime-switching jump diffusion models. Mathematical Control & Related Fields, 2015, 5 (2) : 237-258. doi: 10.3934/mcrf.2015.5.237

[16]

Federica Masiero. Hamilton Jacobi Bellman equations in infinite dimensions with quadratic and superquadratic Hamiltonian. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 223-263. doi: 10.3934/dcds.2012.32.223

[17]

Hongfu Yang, Xiaoyue Li, George Yin. Permanence and ergodicity of stochastic Gilpin-Ayala population model with regime switching. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3743-3766. doi: 10.3934/dcdsb.2016119

[18]

Zhen Wang, Sanyang Liu. Multi-period mean-variance portfolio selection with fixed and proportional transaction costs. Journal of Industrial & Management Optimization, 2013, 9 (3) : 643-656. doi: 10.3934/jimo.2013.9.643

[19]

Wen Li, Song Wang. Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme. Journal of Industrial & Management Optimization, 2013, 9 (2) : 365-389. doi: 10.3934/jimo.2013.9.365

[20]

Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (17)
  • HTML views (17)
  • Cited by (0)

Other articles
by authors

[Back to Top]