2015, 5(4): 743-760. doi: 10.3934/mcrf.2015.5.743

Exact controllability for the Lamé system

1. 

Département de Mathématiques, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar, Tunisia

2. 

Institut de Mathématiques de Toulouse, Université Paul Sabatier & CNRS, 31062 Toulouse Cedex

Received  August 2014 Revised  May 2015 Published  October 2015

In this article, we prove an exact boundary controllability result for the isotropic elastic wave system in a bounded domain $\Omega$ of $\mathbb{R}^{3}$. This result is obtained under a microlocal condition linking the bicharacteristic paths of the system and the region of the boundary on which the control acts. This condition is to be compared with the so-called Geometric Control Condition by Bardos, Lebeau and Rauch [3]. The proof relies on microlocal tools, namely the propagation of the $C^{\infty}$ wave front and microlocal defect measures.
Citation: Belhassen Dehman, Jean-Pierre Raymond. Exact controllability for the Lamé system. Mathematical Control & Related Fields, 2015, 5 (4) : 743-760. doi: 10.3934/mcrf.2015.5.743
References:
[1]

L. Aloui, Stabilisation Neumann pour l'équation des ondes sur un domaine extêrieur,, J. Math. Pures Appl., 81 (2002), 1113. doi: 10.1016/S0021-7824(02)01261-8.

[2]

K. Andersson and R. Melrose, The propagation of singularities along gliding rays,, Invent. Math., 41 (1977), 197. doi: 10.1007/BF01403048.

[3]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optimization, 30 (1992), 1024. doi: 10.1137/0330055.

[4]

C. Bardos, T. Masrour and F. Tatout, Singularités du problème d'élastodynamique,, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 1157.

[5]

C. Bardos, T. Masrour and F. Tatout, Condition nécessaire et suffisante pour la controlabilité exacte et la stabilisation du problème de l'élastodynamique,, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 1279.

[6]

C. Bardos, T. Masrour and F. Tatout, Obseravation and control of elastic waves,, in Singularities and Oscillations (eds. J. Rauch, (1997), 1. doi: 10.1007/978-1-4612-1972-9_1.

[7]

M. Bellassoued, Energy decay for the elastic wave equation with a local time-dependant nonlinear damping,, Acta Math. Sinica, 24 (2008), 1175. doi: 10.1007/s10114-007-6468-2.

[8]

N. Burq, Contrôle de l'équation des ondes dans des ouverts comportant des coins,, Bull. Soc. Math. France, 126 (1998), 601.

[9]

N. Burq and P. Gérard, Condition Nécessaire et suffisante pour la contrôlabilité exacte des ondes,, Comptes Rendus de l'Académie des Sciences, 325 (1997), 749. doi: 10.1016/S0764-4442(97)80053-5.

[10]

N. Burq and G. Lebeau, Mesures de Défaut de compacité, Application au système de Lamé,, Ann. Scient. Ec. Norm. Sup. 4 série, 34 (2001), 817. doi: 10.1016/S0012-9593(01)01078-3.

[11]

M. Daoulatli, B. Dehman and M. Khenissi, Local energy decay for the elastic system with nonlinear damping in an exterior domain,, SIAM J. Control Optim., 48 (2010), 5254. doi: 10.1137/090757332.

[12]

B. Dehman and L. Robbiano, La propriété du prolongement unique pour un système elliptique. Le système de Lamé,, J. Math. Pures Appl. (9), 72 (1993), 475.

[13]

T. Duyckaerts, Thèse de Doctorat,, Université de Paris Sud, (2004).

[14]

P. Gérard, Microlocal defect measures,, Com.Par. Diff. Eq., 16 (1991), 1761. doi: 10.1080/03605309108820822.

[15]

L. Hörmander, The Analysis of Partial Differential Operators,, Vol. 3, (1985).

[16]

G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity,, J. Arch. Ration. Mech. Anal., 148 (1999), 179. doi: 10.1007/s002050050160.

[17]

J.-L. Lions, Contrôlabilité exacte, Stabilisation et Perturbations de Systèmes Distribués. Tome 1,, Rech. Math. Appl., (1988).

[18]

M. Taylor, Pseudodifferential Operators,, Princeton University Press, (1981).

[19]

K. Yamamoto, Singularities of solutions to the boundary value problems for elastic and Maxwell's equations,, Japan J. Math., 14 (1988), 119.

[20]

K. Yamamoto, Exponential energy decay of solutions of elastic wave equations with the Dirichlet condition,, Math. Scand., 65 (1989), 206.

[21]

K. Yamamoto, Propagation of microlocal regularities in Sobolev spaces to solutions of boundary value problems for elastic equations,, Hokkaido Math. Journal, 35 (2006), 497. doi: 10.14492/hokmj/1285766414.

show all references

References:
[1]

L. Aloui, Stabilisation Neumann pour l'équation des ondes sur un domaine extêrieur,, J. Math. Pures Appl., 81 (2002), 1113. doi: 10.1016/S0021-7824(02)01261-8.

[2]

K. Andersson and R. Melrose, The propagation of singularities along gliding rays,, Invent. Math., 41 (1977), 197. doi: 10.1007/BF01403048.

[3]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optimization, 30 (1992), 1024. doi: 10.1137/0330055.

[4]

C. Bardos, T. Masrour and F. Tatout, Singularités du problème d'élastodynamique,, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 1157.

[5]

C. Bardos, T. Masrour and F. Tatout, Condition nécessaire et suffisante pour la controlabilité exacte et la stabilisation du problème de l'élastodynamique,, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 1279.

[6]

C. Bardos, T. Masrour and F. Tatout, Obseravation and control of elastic waves,, in Singularities and Oscillations (eds. J. Rauch, (1997), 1. doi: 10.1007/978-1-4612-1972-9_1.

[7]

M. Bellassoued, Energy decay for the elastic wave equation with a local time-dependant nonlinear damping,, Acta Math. Sinica, 24 (2008), 1175. doi: 10.1007/s10114-007-6468-2.

[8]

N. Burq, Contrôle de l'équation des ondes dans des ouverts comportant des coins,, Bull. Soc. Math. France, 126 (1998), 601.

[9]

N. Burq and P. Gérard, Condition Nécessaire et suffisante pour la contrôlabilité exacte des ondes,, Comptes Rendus de l'Académie des Sciences, 325 (1997), 749. doi: 10.1016/S0764-4442(97)80053-5.

[10]

N. Burq and G. Lebeau, Mesures de Défaut de compacité, Application au système de Lamé,, Ann. Scient. Ec. Norm. Sup. 4 série, 34 (2001), 817. doi: 10.1016/S0012-9593(01)01078-3.

[11]

M. Daoulatli, B. Dehman and M. Khenissi, Local energy decay for the elastic system with nonlinear damping in an exterior domain,, SIAM J. Control Optim., 48 (2010), 5254. doi: 10.1137/090757332.

[12]

B. Dehman and L. Robbiano, La propriété du prolongement unique pour un système elliptique. Le système de Lamé,, J. Math. Pures Appl. (9), 72 (1993), 475.

[13]

T. Duyckaerts, Thèse de Doctorat,, Université de Paris Sud, (2004).

[14]

P. Gérard, Microlocal defect measures,, Com.Par. Diff. Eq., 16 (1991), 1761. doi: 10.1080/03605309108820822.

[15]

L. Hörmander, The Analysis of Partial Differential Operators,, Vol. 3, (1985).

[16]

G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity,, J. Arch. Ration. Mech. Anal., 148 (1999), 179. doi: 10.1007/s002050050160.

[17]

J.-L. Lions, Contrôlabilité exacte, Stabilisation et Perturbations de Systèmes Distribués. Tome 1,, Rech. Math. Appl., (1988).

[18]

M. Taylor, Pseudodifferential Operators,, Princeton University Press, (1981).

[19]

K. Yamamoto, Singularities of solutions to the boundary value problems for elastic and Maxwell's equations,, Japan J. Math., 14 (1988), 119.

[20]

K. Yamamoto, Exponential energy decay of solutions of elastic wave equations with the Dirichlet condition,, Math. Scand., 65 (1989), 206.

[21]

K. Yamamoto, Propagation of microlocal regularities in Sobolev spaces to solutions of boundary value problems for elastic equations,, Hokkaido Math. Journal, 35 (2006), 497. doi: 10.14492/hokmj/1285766414.

[1]

Jong-Shenq Guo, Chang-Hong Wu. Front propagation for a two-dimensional periodic monostable lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 197-223. doi: 10.3934/dcds.2010.26.197

[2]

Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305

[3]

Mark S. Gockenbach, Akhtar A. Khan. Identification of Lamé parameters in linear elasticity: a fixed point approach. Journal of Industrial & Management Optimization, 2005, 1 (4) : 487-497. doi: 10.3934/jimo.2005.1.487

[4]

Mohar Guha, Keith Promislow. Front propagation in a noisy, nonsmooth, excitable medium. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 617-638. doi: 10.3934/dcds.2009.23.617

[5]

Yana Nec, Vladimir A Volpert, Alexander A Nepomnyashchy. Front propagation problems with sub-diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 827-846. doi: 10.3934/dcds.2010.27.827

[6]

Muhammad I. Mustafa. On the control of the wave equation by memory-type boundary condition. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1179-1192. doi: 10.3934/dcds.2015.35.1179

[7]

Larissa V. Fardigola. Transformation operators in controllability problems for the wave equations with variable coefficients on a half-axis controlled by the Dirichlet boundary condition. Mathematical Control & Related Fields, 2015, 5 (1) : 31-53. doi: 10.3934/mcrf.2015.5.31

[8]

Umberto De Maio, Akamabadath K. Nandakumaran, Carmen Perugia. Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition. Evolution Equations & Control Theory, 2015, 4 (3) : 325-346. doi: 10.3934/eect.2015.4.325

[9]

Alfredo Lorenzi, Vladimir G. Romanov. Recovering two Lamé kernels in a viscoelastic system. Inverse Problems & Imaging, 2011, 5 (2) : 431-464. doi: 10.3934/ipi.2011.5.431

[10]

Benoît Perthame, P. E. Souganidis. Front propagation for a jump process model arising in spacial ecology. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1235-1246. doi: 10.3934/dcds.2005.13.1235

[11]

Emeric Bouin. A Hamilton-Jacobi approach for front propagation in kinetic equations. Kinetic & Related Models, 2015, 8 (2) : 255-280. doi: 10.3934/krm.2015.8.255

[12]

Bo Su and Martin Burger. Global weak solutions of non-isothermal front propagation problem. Electronic Research Announcements, 2007, 13: 46-52.

[13]

Elena Trofimchuk, Manuel Pinto, Sergei Trofimchuk. On the minimal speed of front propagation in a model of the Belousov-Zhabotinsky reaction. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1769-1781. doi: 10.3934/dcdsb.2014.19.1769

[14]

Mikhail Kuzmin, Stefano Ruggerini. Front propagation in diffusion-aggregation models with bi-stable reaction. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 819-833. doi: 10.3934/dcdsb.2011.16.819

[15]

Margarita Arias, Juan Campos, Cristina Marcelli. Fastness and continuous dependence in front propagation in Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 11-30. doi: 10.3934/dcdsb.2009.11.11

[16]

Luisa Malaguti, Cristina Marcelli, Serena Matucci. Continuous dependence in front propagation of convective reaction-diffusion equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1083-1098. doi: 10.3934/cpaa.2010.9.1083

[17]

Nicolas Van Goethem. The Frank tensor as a boundary condition in intrinsic linearized elasticity. Journal of Geometric Mechanics, 2016, 8 (4) : 391-411. doi: 10.3934/jgm.2016013

[18]

Chang-Yeol Jung, Alex Mahalov. Wave propagation in random waveguides. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 147-159. doi: 10.3934/dcds.2010.28.147

[19]

Jong-Shenq Guo, Hirokazu Ninomiya, Chin-Chin Wu. Existence of a rotating wave pattern in a disk for a wave front interaction model. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1049-1063. doi: 10.3934/cpaa.2013.12.1049

[20]

Larissa V. Fardigola. Controllability problems for the 1-d wave equations on a half-axis with Neumann boundary control. Mathematical Control & Related Fields, 2013, 3 (2) : 161-183. doi: 10.3934/mcrf.2013.3.161

2017 Impact Factor: 0.542

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]