2015, 5(1): 165-176. doi: 10.3934/mcrf.2015.5.165

A quantitative internal unique continuation for stochastic parabolic equations

1. 

School of Mathematics, Sichuan Normal University, Chengdu, 610068, China

Received  January 2014 Revised  August 2014 Published  January 2015

This paper is addressed to a quantitative internal unique continuation property for stochastic parabolic equations, i.e., we show that each of their solutions can be determined by the observation on any nonempty open subset of the whole region in which the equations evolve. The proof is based on a global Carleman estimate.
Citation: Zhongqi Yin. A quantitative internal unique continuation for stochastic parabolic equations. Mathematical Control & Related Fields, 2015, 5 (1) : 165-176. doi: 10.3934/mcrf.2015.5.165
References:
[1]

L. Escauriaza, Carleman inequalities and the heat operator,, Duke Math. J., 104 (2000), 113. doi: 10.1215/S0012-7094-00-10415-2.

[2]

L. Escauriaza and L. Vega, Carleman inequalities and the heat operator II,, Indiana U. Math. J., 50 (2001), 1149. doi: 10.1512/iumj.2001.50.1937.

[3]

V. Isakov, Carleman type estimates in an anisotropic case and applications,, J. Differential Equations, 105 (1993), 217. doi: 10.1006/jdeq.1993.1088.

[4]

H. Li and Q. Lü, A quantitative boundary unique continuation for stochastic parabolic equations,, J. Math. Anal. Appl., 402 (2013), 518. doi: 10.1016/j.jmaa.2013.01.038.

[5]

F. H. Lin, A uniqueness theorem for parabolic equations,, Comm. Pure Appl. Math., 43 (1990), 127. doi: 10.1002/cpa.3160430105.

[6]

Q. Lü, Observability estimate for stochastic Schrödinger equations and its applications,, SIAM J. Control Optim., 51 (2013), 121. doi: 10.1137/110830964.

[7]

Q. Lü, Observability estimate and state observation problems for stochastic hyperbolic equations,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/9/095011.

[8]

C. C. Poon, Unique continuation for parabolic equations,, Comm. Partial Differential Equations, 21 (1996), 521. doi: 10.1080/03605309608821195.

[9]

J.-C. Saut and B. Scheurer, Unique continuation for soome evolution equations,, J. Differential Equations, 66 (1987), 118. doi: 10.1016/0022-0396(87)90043-X.

[10]

C. D. Sogge, A unique continuation theorem for second order parabolic differential operators,, Ark. Mat., 28 (1990), 159. doi: 10.1007/BF02387373.

[11]

S. Tang and X. Zhang, Null controllability for forward and backward stochastic parabolic equations,, SIAM J. Control Optim., 48 (2009), 2191. doi: 10.1137/050641508.

[12]

H. Yamabe, A unique continuation theorem of a diffusion equation,, Ann. Math., 69 (1959), 462. doi: 10.2307/1970194.

[13]

X. Zhang, Unique continuation for stochastic parabolic equations,, Differential Integral Equations, 21 (2008), 81.

[14]

E. Zuazua, Controllability and observability of partial differential equations: Some results and open problems,, in Handbook of Differential Equations: Evolutionary Differential Equations. Vol. III, (2007), 527. doi: 10.1016/S1874-5717(07)80010-7.

[15]

C. Zuily, Uniqueness and Non-Uniqueness in the Cauchy Problem,, Progress in Mathematics, (1983). doi: 10.1007/978-1-4899-6656-8.

show all references

References:
[1]

L. Escauriaza, Carleman inequalities and the heat operator,, Duke Math. J., 104 (2000), 113. doi: 10.1215/S0012-7094-00-10415-2.

[2]

L. Escauriaza and L. Vega, Carleman inequalities and the heat operator II,, Indiana U. Math. J., 50 (2001), 1149. doi: 10.1512/iumj.2001.50.1937.

[3]

V. Isakov, Carleman type estimates in an anisotropic case and applications,, J. Differential Equations, 105 (1993), 217. doi: 10.1006/jdeq.1993.1088.

[4]

H. Li and Q. Lü, A quantitative boundary unique continuation for stochastic parabolic equations,, J. Math. Anal. Appl., 402 (2013), 518. doi: 10.1016/j.jmaa.2013.01.038.

[5]

F. H. Lin, A uniqueness theorem for parabolic equations,, Comm. Pure Appl. Math., 43 (1990), 127. doi: 10.1002/cpa.3160430105.

[6]

Q. Lü, Observability estimate for stochastic Schrödinger equations and its applications,, SIAM J. Control Optim., 51 (2013), 121. doi: 10.1137/110830964.

[7]

Q. Lü, Observability estimate and state observation problems for stochastic hyperbolic equations,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/9/095011.

[8]

C. C. Poon, Unique continuation for parabolic equations,, Comm. Partial Differential Equations, 21 (1996), 521. doi: 10.1080/03605309608821195.

[9]

J.-C. Saut and B. Scheurer, Unique continuation for soome evolution equations,, J. Differential Equations, 66 (1987), 118. doi: 10.1016/0022-0396(87)90043-X.

[10]

C. D. Sogge, A unique continuation theorem for second order parabolic differential operators,, Ark. Mat., 28 (1990), 159. doi: 10.1007/BF02387373.

[11]

S. Tang and X. Zhang, Null controllability for forward and backward stochastic parabolic equations,, SIAM J. Control Optim., 48 (2009), 2191. doi: 10.1137/050641508.

[12]

H. Yamabe, A unique continuation theorem of a diffusion equation,, Ann. Math., 69 (1959), 462. doi: 10.2307/1970194.

[13]

X. Zhang, Unique continuation for stochastic parabolic equations,, Differential Integral Equations, 21 (2008), 81.

[14]

E. Zuazua, Controllability and observability of partial differential equations: Some results and open problems,, in Handbook of Differential Equations: Evolutionary Differential Equations. Vol. III, (2007), 527. doi: 10.1016/S1874-5717(07)80010-7.

[15]

C. Zuily, Uniqueness and Non-Uniqueness in the Cauchy Problem,, Progress in Mathematics, (1983). doi: 10.1007/978-1-4899-6656-8.

[1]

Peng Gao. Carleman estimates and Unique Continuation Property for 1-D viscous Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 169-188. doi: 10.3934/dcds.2017007

[2]

Agnid Banerjee. A note on the unique continuation property for fully nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 623-626. doi: 10.3934/cpaa.2015.14.623

[3]

Gunther Uhlmann, Jenn-Nan Wang. Unique continuation property for the elasticity with general residual stress. Inverse Problems & Imaging, 2009, 3 (2) : 309-317. doi: 10.3934/ipi.2009.3.309

[4]

Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control & Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27

[5]

Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control & Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012

[6]

Ihyeok Seo. Carleman estimates for the Schrödinger operator and applications to unique continuation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1013-1036. doi: 10.3934/cpaa.2012.11.1013

[7]

Peng Gao. Global Carleman estimate for the Kawahara equation and its applications. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1853-1874. doi: 10.3934/cpaa.2018088

[8]

A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515

[9]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[10]

Mehdi Badra. Global Carleman inequalities for Stokes and penalized Stokes equations. Mathematical Control & Related Fields, 2011, 1 (2) : 149-175. doi: 10.3934/mcrf.2011.1.149

[11]

Jong-Shenq Guo, Satoshi Sasayama, Chi-Jen Wang. Blowup rate estimate for a system of semilinear parabolic equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 711-718. doi: 10.3934/cpaa.2009.8.711

[12]

Gary Lieberman. A new regularity estimate for solutions of singular parabolic equations. Conference Publications, 2005, 2005 (Special) : 605-610. doi: 10.3934/proc.2005.2005.605

[13]

José G. Llorente. Mean value properties and unique continuation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 185-199. doi: 10.3934/cpaa.2015.14.185

[14]

B. E. Ainseba, Sebastian Aniţa. Internal nonnegative stabilization for some parabolic equations. Communications on Pure & Applied Analysis, 2008, 7 (3) : 491-512. doi: 10.3934/cpaa.2008.7.491

[15]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[16]

Chunpeng Wang, Yanan Zhou, Runmei Du, Qiang Liu. Carleman estimate for solutions to a degenerate convection-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-16. doi: 10.3934/dcdsb.2018133

[17]

Genni Fragnelli. Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 687-701. doi: 10.3934/dcdss.2013.6.687

[18]

Zdzisław Brzeźniak, Paul André Razafimandimby. Irreducibility and strong Feller property for stochastic evolution equations in Banach spaces. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1051-1077. doi: 10.3934/dcdsb.2016.21.1051

[19]

Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems & Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619

[20]

Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827

2017 Impact Factor: 0.542

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]