2013, 3(3): 245-267. doi: 10.3934/mcrf.2013.3.245

Estimates on trajectories in a closed set with corners for $(t,x)$ dependent data

1. 

Laboratoire de Mathematiques, Université de Bretagne Occidentale, 6 Avenue Victor Le Gorgeu, 29200 Brest, France

2. 

Department of Electrical and Electronic Engineering, Imperial College London, SW7 2BT

Received  November 2012 Revised  February 2013 Published  September 2013

Estimates on the distance of a given process from the set of processes that satisfy a specified state constraint in terms of the state constraint violation are important analytical tools in state constrained optimal control theory; they have been employed to ensure the validity of the Maximum Principle in normal form, to establish regularity properties of the value function, to justify interpreting the value function as a unique solution of the Hamilton-Jacobi equation, and for other purposes. A range of estimates are required, which differ according the metrics used to measure the `distance' and the modulus $\theta(h)$ of state constraint violation $h$ in terms of which the estimates are expressed. Recent research has shown that simple linear estimates are valid when the state constraint set $A$ has smooth boundary, but do not generalize to a setting in which the boundary of $A$ has corners. Indeed, for a velocity set $F$ which does not depend on $(t,x)$ and for state constraints taking the form of the intersection of two closed spaces (the simplest case of a boundary with corners), the best distance estimates we can hope for, involving the $W^{1,1,}$ metric on state trajectories, is a super-linear estimate expressed in terms of the $h|\log(h)|$ modulus. But, distance estimates involving the $h|\log (h)|$ modulus are not in general valid when the velocity set $F(.,x)$ is required merely to be continuous, while not even distance estimates involving the weaker, Hölder modulus $h^{\alpha}$ (with $\alpha$ arbitrarily small) are in general valid, when $F(.,x)$ is allowed to be discontinuous. This paper concerns the validity of distance estimates when the velocity set $F(t,x)$ is $(t,x)$-dependent and satisfy standard hypotheses on the velocity set (linear growth, Lipschitz $x$-dependence and an inward pointing condition). Hypotheses are identified for the validity of distance estimates, involving both the $h|\log(h)|$ and linear moduli, within the framework of control systems described by a controlled differential equation and state constraint sets having a functional inequality representation.
Citation: Piernicola Bettiol, Richard Vinter. Estimates on trajectories in a closed set with corners for $(t,x)$ dependent data. Mathematical Control & Related Fields, 2013, 3 (3) : 245-267. doi: 10.3934/mcrf.2013.3.245
References:
[1]

J.-P. Aubin and H. Frankowska, "Set-valued Analysis,", Systems & Control: Foundations & Applications, (1990).

[2]

P. Bettiol, A. Bressan and R. B. Vinter, On trajectories satisfying a state constraint: $W^{1,1}$ estimates and counter-examples,, SIAM J. Control Optim., 48 (2010), 4664. doi: 10.1137/090769788.

[3]

P. Bettiol, A. Bressan and R. B. Vinter, Estimates for trajectories confined to a cone in $\mathbbR^n$,, SIAM J. Control Optim., 49 (2011), 21. doi: 10.1137/09077240X.

[4]

P. Bettiol, P. Cardaliaguet and M. Quincampoix, Zero-sum state constrained differential games: Existence of value for Bolza problem,, Int. J. Game Theory, 34 (2006), 495. doi: 10.1007/s00182-006-0030-9.

[5]

P. Bettiol and H. Frankowska, Regularity of solution maps of differential inclusions for systems under state constraints,, Set-Valued Anal., 15 (2007), 21. doi: 10.1007/s11228-006-0018-4.

[6]

P. Bettiol and H. Frankowska, Lipschitz regularity of solution map to control systems with multiple state constraints,, Discrete Contin. Dyn. Syst., 32 (2012), 1.

[7]

P. Bettiol, H. Frankowska and R. B. Vinter, $L^{\infty}$ estimates on trajectories confined to a closed subset,, J. Differential Eq., 252 (2012), 1912. doi: 10.1016/j.jde.2011.09.007.

[8]

P. Bettiol and R. B. Vinter, Existence of feasible approximating trajectories for differential inclusions with obstacles as state constraints,, Proc. of the 48th IEEE CDC 2009., (2009). doi: 10.1109/CDC.2009.5400266.

[9]

P. Bettiol and R. B. Vinter, Sensitivity interpretations of the co-state variable for optimal control problems with state constraints,, SIAM J. Control Optim., 48 (2010), 3297. doi: 10.1137/080732614.

[10]

P. Bettiol and R. B. Vinter, Trajectories satisfying a state constraint: Improved estimates and new non-degeneracy conditions,, IEEE Trans. Automat. Control, 56 (2011), 1090. doi: 10.1109/TAC.2010.2088670.

[11]

A. Bressan and G. Facchi, Trajectories of differential inclusions with state constraints,, J. Differential Eq., 250 (2011), 2267. doi: 10.1016/j.jde.2010.12.021.

[12]

F. H. Clarke, The maximum principle under minimal hypotheses,, SIAM J. Control Optim., 14 (1976), 1078. doi: 10.1137/0314067.

[13]

F. H. Clarke, L. Rifford and R. J. Stern, Feedback in state constrained optimal control,, ESAIM Control Optim. Calc. Var., 7 (2002), 97. doi: 10.1051/cocv:2002005.

[14]

I. Ekeland, On the variational principle,, J. Math. Anal. Appl., 47 (1974), 324. doi: 10.1016/0022-247X(74)90025-0.

[15]

F. Forcellini and F. Rampazzo, On nonconvex differential inclusions whose state is constrained in the closure of an open set. Applications to dynamic programming,, Differential Integral Equations, 12 (1999), 471.

[16]

H. Frankowska and M. Mazzola, Discontinuous solutions of Hamilton-Jacobi-Bellman equation under state constraints,, Calculus Var. Partial Differ. Equ., 46 (2013), 725. doi: 10.1007/s00526-012-0501-8.

[17]

H. Frankowska and M. Mazzola, On relations of the adjoint state to the value function for optimal control problems with state constraints,, NoDEA Nonlinear Differ. Equ. Appl., 20 (2013), 361. doi: 10.1007/s00030-012-0183-0.

[18]

H. Frankowska and F. Rampazzo, Filippov's and Filippov-Wazewski's theorems on closed domains,, J. Differential Eq., 161 (2000), 449. doi: 10.1006/jdeq.2000.3711.

[19]

H. Frankowska and R. B. Vinter, Existence of neighbouring feasible trajectories: Applications to dynamic programming for state constrained optimal control problems,, J. Optim. Theory Appl., 104 (2000), 21. doi: 10.1023/A:1004668504089.

[20]

F. Rampazzo and R. B. Vinter, A theorem on existence of neighbouring trajectories satisfying a state constraint, with applications to optimal control,, IMA J. Math. Control Inform., 16 (1999), 335. doi: 10.1093/imamci/16.4.335.

[21]

F. Rampazzo and R. B. Vinter, Degenerate optimal control problems with state constraints,, SIAM J. Control Optim., 39 (2000), 989. doi: 10.1137/S0363012998340223.

[22]

H. M. Soner, Optimal control problems with state-space constraints,II,, SIAM J. Control Optim., 24 (1986), 552. doi: 10.1137/0324067.

[23]

R. B. Vinter, "Optimal Control,", Systems & Control: Foundations & Applications. Birkhaüser Boston, (2000).

show all references

References:
[1]

J.-P. Aubin and H. Frankowska, "Set-valued Analysis,", Systems & Control: Foundations & Applications, (1990).

[2]

P. Bettiol, A. Bressan and R. B. Vinter, On trajectories satisfying a state constraint: $W^{1,1}$ estimates and counter-examples,, SIAM J. Control Optim., 48 (2010), 4664. doi: 10.1137/090769788.

[3]

P. Bettiol, A. Bressan and R. B. Vinter, Estimates for trajectories confined to a cone in $\mathbbR^n$,, SIAM J. Control Optim., 49 (2011), 21. doi: 10.1137/09077240X.

[4]

P. Bettiol, P. Cardaliaguet and M. Quincampoix, Zero-sum state constrained differential games: Existence of value for Bolza problem,, Int. J. Game Theory, 34 (2006), 495. doi: 10.1007/s00182-006-0030-9.

[5]

P. Bettiol and H. Frankowska, Regularity of solution maps of differential inclusions for systems under state constraints,, Set-Valued Anal., 15 (2007), 21. doi: 10.1007/s11228-006-0018-4.

[6]

P. Bettiol and H. Frankowska, Lipschitz regularity of solution map to control systems with multiple state constraints,, Discrete Contin. Dyn. Syst., 32 (2012), 1.

[7]

P. Bettiol, H. Frankowska and R. B. Vinter, $L^{\infty}$ estimates on trajectories confined to a closed subset,, J. Differential Eq., 252 (2012), 1912. doi: 10.1016/j.jde.2011.09.007.

[8]

P. Bettiol and R. B. Vinter, Existence of feasible approximating trajectories for differential inclusions with obstacles as state constraints,, Proc. of the 48th IEEE CDC 2009., (2009). doi: 10.1109/CDC.2009.5400266.

[9]

P. Bettiol and R. B. Vinter, Sensitivity interpretations of the co-state variable for optimal control problems with state constraints,, SIAM J. Control Optim., 48 (2010), 3297. doi: 10.1137/080732614.

[10]

P. Bettiol and R. B. Vinter, Trajectories satisfying a state constraint: Improved estimates and new non-degeneracy conditions,, IEEE Trans. Automat. Control, 56 (2011), 1090. doi: 10.1109/TAC.2010.2088670.

[11]

A. Bressan and G. Facchi, Trajectories of differential inclusions with state constraints,, J. Differential Eq., 250 (2011), 2267. doi: 10.1016/j.jde.2010.12.021.

[12]

F. H. Clarke, The maximum principle under minimal hypotheses,, SIAM J. Control Optim., 14 (1976), 1078. doi: 10.1137/0314067.

[13]

F. H. Clarke, L. Rifford and R. J. Stern, Feedback in state constrained optimal control,, ESAIM Control Optim. Calc. Var., 7 (2002), 97. doi: 10.1051/cocv:2002005.

[14]

I. Ekeland, On the variational principle,, J. Math. Anal. Appl., 47 (1974), 324. doi: 10.1016/0022-247X(74)90025-0.

[15]

F. Forcellini and F. Rampazzo, On nonconvex differential inclusions whose state is constrained in the closure of an open set. Applications to dynamic programming,, Differential Integral Equations, 12 (1999), 471.

[16]

H. Frankowska and M. Mazzola, Discontinuous solutions of Hamilton-Jacobi-Bellman equation under state constraints,, Calculus Var. Partial Differ. Equ., 46 (2013), 725. doi: 10.1007/s00526-012-0501-8.

[17]

H. Frankowska and M. Mazzola, On relations of the adjoint state to the value function for optimal control problems with state constraints,, NoDEA Nonlinear Differ. Equ. Appl., 20 (2013), 361. doi: 10.1007/s00030-012-0183-0.

[18]

H. Frankowska and F. Rampazzo, Filippov's and Filippov-Wazewski's theorems on closed domains,, J. Differential Eq., 161 (2000), 449. doi: 10.1006/jdeq.2000.3711.

[19]

H. Frankowska and R. B. Vinter, Existence of neighbouring feasible trajectories: Applications to dynamic programming for state constrained optimal control problems,, J. Optim. Theory Appl., 104 (2000), 21. doi: 10.1023/A:1004668504089.

[20]

F. Rampazzo and R. B. Vinter, A theorem on existence of neighbouring trajectories satisfying a state constraint, with applications to optimal control,, IMA J. Math. Control Inform., 16 (1999), 335. doi: 10.1093/imamci/16.4.335.

[21]

F. Rampazzo and R. B. Vinter, Degenerate optimal control problems with state constraints,, SIAM J. Control Optim., 39 (2000), 989. doi: 10.1137/S0363012998340223.

[22]

H. M. Soner, Optimal control problems with state-space constraints,II,, SIAM J. Control Optim., 24 (1986), 552. doi: 10.1137/0324067.

[23]

R. B. Vinter, "Optimal Control,", Systems & Control: Foundations & Applications. Birkhaüser Boston, (2000).

[1]

Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579

[2]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[3]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553

[4]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[5]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control & Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[6]

Piernicola Bettiol, Hélène Frankowska. Lipschitz regularity of solution map of control systems with multiple state constraints. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 1-26. doi: 10.3934/dcds.2012.32.1

[7]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[8]

Matthias Gerdts, Martin Kunkel. A nonsmooth Newton's method for discretized optimal control problems with state and control constraints. Journal of Industrial & Management Optimization, 2008, 4 (2) : 247-270. doi: 10.3934/jimo.2008.4.247

[9]

Piermarco Cannarsa, Hélène Frankowska, Elsa M. Marchini. On Bolza optimal control problems with constraints. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 629-653. doi: 10.3934/dcdsb.2009.11.629

[10]

Changzhi Wu, Kok Lay Teo, Volker Rehbock. Optimal control of piecewise affine systems with piecewise affine state feedback. Journal of Industrial & Management Optimization, 2009, 5 (4) : 737-747. doi: 10.3934/jimo.2009.5.737

[11]

M. Arisawa, P.-L. Lions. Continuity of admissible trajectories for state constraints control problems. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 297-305. doi: 10.3934/dcds.1996.2.297

[12]

Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 321-337. doi: 10.3934/mbe.2017021

[13]

Maria do Rosário de Pinho, Ilya Shvartsman. Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 505-522. doi: 10.3934/dcds.2011.29.505

[14]

Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174

[15]

Elimhan N. Mahmudov. Optimal control of second order delay-discrete and delay-differential inclusions with state constraints. Evolution Equations & Control Theory, 2018, 7 (3) : 501-529. doi: 10.3934/eect.2018024

[16]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[17]

Elena K. Kostousova. On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6149-6162. doi: 10.3934/dcds.2018153

[18]

IvÁn Area, FaÏÇal NdaÏrou, Juan J. Nieto, Cristiana J. Silva, Delfim F. M. Torres. Ebola model and optimal control with vaccination constraints. Journal of Industrial & Management Optimization, 2018, 14 (2) : 427-446. doi: 10.3934/jimo.2017054

[19]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[20]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

2017 Impact Factor: 0.631

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]