2013, 3(2): 185-208. doi: 10.3934/mcrf.2013.3.185

Time optimal control for a nonholonomic system with state constraint

1. 

Université de Lorraine, Institut Elie Cartan de Lorraine, UMR 7502, Vandoeuvre-lès-Nancy, F-54506, France, France

Received  June 2012 Revised  December 2012 Published  March 2013

The aim of this paper is to tackle the time optimal controllability of an $(n+1)$-dimensional nonholonomic integrator. In the optimal control problem we consider, the state variables are subject to a bound constraint. We give a full description of the optimal control and optimal trajectories are explicitly obtained. The optimal trajectories we construct, lie in a 2-dimensional plane and they are composed of arcs of circle.
Citation: Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185
References:
[1]

A. Agrachev, D. Barilari and U. Boscain, On the Hausdorff volume in sub-Riemannian geometry,, Calc. Var. Partial Differential Equations, 43 (2012), 355. doi: 10.1007/s00526-011-0414-y.

[2]

A. A. Agrachev and Y. L. Sachkov, "Control Theory from the Geometric Viewpoint,", Encyclopaedia of Mathematical Sciences, 87 (2004).

[3]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,", Oxford Mathematical Monographs, (2000).

[4]

R. Beals, B. Gaveau and P. C. Greiner, Hamilton-Jacobi theory and the heat kernel on Heisenberg groups,, J. Math. Pures Appl. (9), 79 (2000), 633. doi: 10.1016/S0021-7824(00)00169-0.

[5]

A. M. Bloch, Nonholonomic mechanics and control,, With the collaboration of J. Baillieul, 24 (2003). doi: 10.1007/b97376.

[6]

J. F. Bonnans and A. Hermant, Well-posedness of the shooting algorithm for state constrained optimal control problems with a single constraint and control,, SIAM J. Control Optim., 46 (2007), 1398. doi: 10.1137/06065756X.

[7]

R. W. Brockett, Control theory and singular Riemannian geometry,, in, (1982), 11.

[8]

A. E. Bryson, Jr. and Y. C. Ho, Applied optimal control. Optimization, estimation, and control,, Revised printing, (1975).

[9]

L. Cesari, "Optimization-Theory and Applications. Problems with Ordinary Differential Equations,", Applications of Mathematics (New York), 17 (1983).

[10]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", Second edition, 5 (1990). doi: 10.1137/1.9781611971309.

[11]

J.-M. Coron, "Control and Nonlinearity,", Mathematical Surveys and Monographs, 136 (2007).

[12]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,", Studies in Advanced Mathematics, (1992).

[13]

R. F. Hartl, S. P. Sethi and R. G. Vickson, A survey of the maximum principles for optimal control problems with state constraints,, SIAM Rev., 37 (1995), 181. doi: 10.1137/1037043.

[14]

R. A. Horn and C. R. Johnson, "Matrix Analysis,", Cambridge University Press, (1985).

[15]

A. D. Ioffe and V. M. Tihomirov, "Theory of Extremal Problems,", Studies in Mathematics and its Applications, 6 (1979).

[16]

J. Lohéac, J.-F. Scheid and M. Tucsnak, Controllability and time optimal control for low Reynolds numbers swimmers,, Acta Applicandae Mathematicae, 123 (2013), 175. doi: 10.1007/s10440-012-9760-9.

[17]

C. Prieur and E. Trélat, Robust optimal stabilization of the Brockett integrator via a hybrid feedback,, Math. Control Signals Systems, 17 (2005), 201. doi: 10.1007/s00498-005-0152-9.

[18]

A. Shapere and F. Wilczek, Efficiencies of self-propulsion at low Reynolds number,, J. Fluid. Mech., 198 (1989), 587. doi: 10.1017/S0022112089000261.

show all references

References:
[1]

A. Agrachev, D. Barilari and U. Boscain, On the Hausdorff volume in sub-Riemannian geometry,, Calc. Var. Partial Differential Equations, 43 (2012), 355. doi: 10.1007/s00526-011-0414-y.

[2]

A. A. Agrachev and Y. L. Sachkov, "Control Theory from the Geometric Viewpoint,", Encyclopaedia of Mathematical Sciences, 87 (2004).

[3]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,", Oxford Mathematical Monographs, (2000).

[4]

R. Beals, B. Gaveau and P. C. Greiner, Hamilton-Jacobi theory and the heat kernel on Heisenberg groups,, J. Math. Pures Appl. (9), 79 (2000), 633. doi: 10.1016/S0021-7824(00)00169-0.

[5]

A. M. Bloch, Nonholonomic mechanics and control,, With the collaboration of J. Baillieul, 24 (2003). doi: 10.1007/b97376.

[6]

J. F. Bonnans and A. Hermant, Well-posedness of the shooting algorithm for state constrained optimal control problems with a single constraint and control,, SIAM J. Control Optim., 46 (2007), 1398. doi: 10.1137/06065756X.

[7]

R. W. Brockett, Control theory and singular Riemannian geometry,, in, (1982), 11.

[8]

A. E. Bryson, Jr. and Y. C. Ho, Applied optimal control. Optimization, estimation, and control,, Revised printing, (1975).

[9]

L. Cesari, "Optimization-Theory and Applications. Problems with Ordinary Differential Equations,", Applications of Mathematics (New York), 17 (1983).

[10]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", Second edition, 5 (1990). doi: 10.1137/1.9781611971309.

[11]

J.-M. Coron, "Control and Nonlinearity,", Mathematical Surveys and Monographs, 136 (2007).

[12]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,", Studies in Advanced Mathematics, (1992).

[13]

R. F. Hartl, S. P. Sethi and R. G. Vickson, A survey of the maximum principles for optimal control problems with state constraints,, SIAM Rev., 37 (1995), 181. doi: 10.1137/1037043.

[14]

R. A. Horn and C. R. Johnson, "Matrix Analysis,", Cambridge University Press, (1985).

[15]

A. D. Ioffe and V. M. Tihomirov, "Theory of Extremal Problems,", Studies in Mathematics and its Applications, 6 (1979).

[16]

J. Lohéac, J.-F. Scheid and M. Tucsnak, Controllability and time optimal control for low Reynolds numbers swimmers,, Acta Applicandae Mathematicae, 123 (2013), 175. doi: 10.1007/s10440-012-9760-9.

[17]

C. Prieur and E. Trélat, Robust optimal stabilization of the Brockett integrator via a hybrid feedback,, Math. Control Signals Systems, 17 (2005), 201. doi: 10.1007/s00498-005-0152-9.

[18]

A. Shapere and F. Wilczek, Efficiencies of self-propulsion at low Reynolds number,, J. Fluid. Mech., 198 (1989), 587. doi: 10.1017/S0022112089000261.

[1]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[2]

Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174

[3]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[4]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[5]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control & Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[6]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[7]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553

[8]

Matthias Gerdts, Martin Kunkel. A nonsmooth Newton's method for discretized optimal control problems with state and control constraints. Journal of Industrial & Management Optimization, 2008, 4 (2) : 247-270. doi: 10.3934/jimo.2008.4.247

[9]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[10]

Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571

[11]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[12]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control & Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[13]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[14]

Maria do Rosário de Pinho, Ilya Shvartsman. Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 505-522. doi: 10.3934/dcds.2011.29.505

[15]

Elimhan N. Mahmudov. Optimal control of second order delay-discrete and delay-differential inclusions with state constraints. Evolution Equations & Control Theory, 2018, 7 (3) : 501-529. doi: 10.3934/eect.2018024

[16]

Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial & Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067

[17]

Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581

[18]

Elena K. Kostousova. On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6149-6162. doi: 10.3934/dcds.2018153

[19]

Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 619-630. doi: 10.3934/naco.2012.2.619

[20]

Piermarco Cannarsa, Hélène Frankowska, Elsa M. Marchini. On Bolza optimal control problems with constraints. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 629-653. doi: 10.3934/dcdsb.2009.11.629

2017 Impact Factor: 0.631

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]