2011, 1(4): 469-491. doi: 10.3934/mcrf.2011.1.469

Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction

1. 

Lehrstuhl 2 für Angewandte Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 11, 91058 Erlangen, Germany, Germany

Received  December 2010 Revised  June 2011 Published  November 2011

We consider the isothermal Euler equations with friction that model the gas flow through pipes. We present a method of time-delayed boundary feedback stabilization to stabilize the isothermal Euler equations locally around a given stationary subcritical state on a finite time interval. The considered control system is a quasilinear hyperbolic system with a source term. For this system we introduce a Lyapunov function with delay terms and develop time-delayed boundary controls for which the Lyapunov function decays exponentially with time. We present the stabilization method for a single gas pipe and for a star-shaped network of pipes.
Citation: Martin Gugat, Markus Dick. Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction. Mathematical Control & Related Fields, 2011, 1 (4) : 469-491. doi: 10.3934/mcrf.2011.1.469
References:
[1]

M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations,, Netw. Heterog. Media, 1 (2006), 295. doi: 10.3934/nhm.2006.1.295.

[2]

M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41. doi: 10.3934/nhm.2006.1.41.

[3]

J. F. Bonnans and J. André, Optimal structure of gas transmission trunklines,, Research Report, (2009).

[4]

R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals,, SIAM J. Control Optim., 48 (2009), 2032. doi: 10.1137/080716372.

[5]

J.-M. Coron, "Control and Nonlinearity,", Mathematical Surveys and Monographs, 136 (2007).

[6]

J.-M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws,, IEEE Trans. Automat. Control, 52 (2007), 2. doi: 10.1109/TAC.2006.887903.

[7]

M. Dick, M. Gugat and G. Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes,, Netw. Heterog. Media, 5 (2010), 691.

[8]

M. Gugat, Optimal nodal control of networked hyperbolic systems: Evaluation of derivatives,, Adv. Model. Optim., 7 (2005), 9.

[9]

M. Gugat, Boundary feedback stabilization by time delay for one-dimensional wave equations,, IMA J. Math. Control Inform., 27 (2010), 189. doi: 10.1093/imamci/dnq007.

[10]

M. Gugat, Stabilizing a vibrating string by time delay,, in, (2010), 23. doi: 10.1109/MMAR.2010.5587248.

[11]

M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks,, ESAIM Control Optim. Calc. Var., 17 (2011), 28. doi: 10.1051/cocv/2009035.

[12]

M. Gugat, M. Herty and V. Schleper, Flow control in gas networks: Exact controllability to a given demand,, Math. Methods Appl. Sci., 34 (2011), 745. doi: 10.1002/mma.1394.

[13]

M. Gugat and M. Sigalotti, Stars of vibrating strings: Switching boundary feedback stabilization,, Netw. Heterog. Media, 5 (2010), 299. doi: 10.3934/nhm.2010.5.299.

[14]

M. Herty, J. Mohring and V. Sachers, A new model for gas flow in pipe networks,, Math. Methods Appl. Sci., 33 (2010), 845.

[15]

M. Herty and V. Sachers, Adjoint calculus for optimization of gas networks,, Netw. Heterog. Media, 2 (2007), 733. doi: 10.3934/nhm.2007.2.733.

[16]

T. Li, "Controllability and Observability for Quasilinear Hyperbolic Systems,", AIMS Series on Applied Mathematics, 3 (2010).

[17]

T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions,, Discrete Contin. Dyn. Syst., 28 (2010), 243. doi: 10.3934/dcds.2010.28.243.

[18]

A. Marigo, Entropic solutions for irrigation networks,, SIAM J. Appl. Math., 70 (): 1711. doi: 10.1137/09074783X.

[19]

S. Nicaise and J. Valein, Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks,, Netw. Heterog. Media, 2 (2007), 425. doi: 10.3934/nhm.2007.2.425.

[20]

S. Nicaise, J. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 559. doi: 10.3934/dcdss.2009.2.559.

[21]

A. Osiadacz, "Simulation and Analysis of Gas Networks,", Gulf Publishing Company, (1987).

[22]

A. Osiadacz and M. Chaczykowski, Comparison of isothermal and non-isothermal pipeline gas flow models,, Chemical Engineering J., 81 (2001), 41. doi: 10.1016/S1385-8947(00)00194-7.

[23]

M. C. Steinbach, On PDE solution in transient optimization of gas networks,, J. Comput. Appl. Math., 203 (2007), 345. doi: 10.1016/j.cam.2006.04.018.

[24]

J. Valein and E. Zuazua, Stabilization of the wave equation on 1-D networks,, SIAM J. Control Optim., 48 (2009), 2771. doi: 10.1137/080733590.

[25]

J.-M. Wang, B.-Z. Guo and M. Krstic, Wave equation stabilization by delays equal to even multiples of the wave propagation time,, SIAM J. Control Optim., 49 (2011), 517. doi: 10.1137/100796261.

[26]

Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems,, Chinese Ann. Math. Ser. B, 27 (2006), 643. doi: 10.1007/s11401-005-0520-2.

show all references

References:
[1]

M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations,, Netw. Heterog. Media, 1 (2006), 295. doi: 10.3934/nhm.2006.1.295.

[2]

M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41. doi: 10.3934/nhm.2006.1.41.

[3]

J. F. Bonnans and J. André, Optimal structure of gas transmission trunklines,, Research Report, (2009).

[4]

R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals,, SIAM J. Control Optim., 48 (2009), 2032. doi: 10.1137/080716372.

[5]

J.-M. Coron, "Control and Nonlinearity,", Mathematical Surveys and Monographs, 136 (2007).

[6]

J.-M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws,, IEEE Trans. Automat. Control, 52 (2007), 2. doi: 10.1109/TAC.2006.887903.

[7]

M. Dick, M. Gugat and G. Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes,, Netw. Heterog. Media, 5 (2010), 691.

[8]

M. Gugat, Optimal nodal control of networked hyperbolic systems: Evaluation of derivatives,, Adv. Model. Optim., 7 (2005), 9.

[9]

M. Gugat, Boundary feedback stabilization by time delay for one-dimensional wave equations,, IMA J. Math. Control Inform., 27 (2010), 189. doi: 10.1093/imamci/dnq007.

[10]

M. Gugat, Stabilizing a vibrating string by time delay,, in, (2010), 23. doi: 10.1109/MMAR.2010.5587248.

[11]

M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks,, ESAIM Control Optim. Calc. Var., 17 (2011), 28. doi: 10.1051/cocv/2009035.

[12]

M. Gugat, M. Herty and V. Schleper, Flow control in gas networks: Exact controllability to a given demand,, Math. Methods Appl. Sci., 34 (2011), 745. doi: 10.1002/mma.1394.

[13]

M. Gugat and M. Sigalotti, Stars of vibrating strings: Switching boundary feedback stabilization,, Netw. Heterog. Media, 5 (2010), 299. doi: 10.3934/nhm.2010.5.299.

[14]

M. Herty, J. Mohring and V. Sachers, A new model for gas flow in pipe networks,, Math. Methods Appl. Sci., 33 (2010), 845.

[15]

M. Herty and V. Sachers, Adjoint calculus for optimization of gas networks,, Netw. Heterog. Media, 2 (2007), 733. doi: 10.3934/nhm.2007.2.733.

[16]

T. Li, "Controllability and Observability for Quasilinear Hyperbolic Systems,", AIMS Series on Applied Mathematics, 3 (2010).

[17]

T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions,, Discrete Contin. Dyn. Syst., 28 (2010), 243. doi: 10.3934/dcds.2010.28.243.

[18]

A. Marigo, Entropic solutions for irrigation networks,, SIAM J. Appl. Math., 70 (): 1711. doi: 10.1137/09074783X.

[19]

S. Nicaise and J. Valein, Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks,, Netw. Heterog. Media, 2 (2007), 425. doi: 10.3934/nhm.2007.2.425.

[20]

S. Nicaise, J. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 559. doi: 10.3934/dcdss.2009.2.559.

[21]

A. Osiadacz, "Simulation and Analysis of Gas Networks,", Gulf Publishing Company, (1987).

[22]

A. Osiadacz and M. Chaczykowski, Comparison of isothermal and non-isothermal pipeline gas flow models,, Chemical Engineering J., 81 (2001), 41. doi: 10.1016/S1385-8947(00)00194-7.

[23]

M. C. Steinbach, On PDE solution in transient optimization of gas networks,, J. Comput. Appl. Math., 203 (2007), 345. doi: 10.1016/j.cam.2006.04.018.

[24]

J. Valein and E. Zuazua, Stabilization of the wave equation on 1-D networks,, SIAM J. Control Optim., 48 (2009), 2771. doi: 10.1137/080733590.

[25]

J.-M. Wang, B.-Z. Guo and M. Krstic, Wave equation stabilization by delays equal to even multiples of the wave propagation time,, SIAM J. Control Optim., 49 (2011), 517. doi: 10.1137/100796261.

[26]

Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems,, Chinese Ann. Math. Ser. B, 27 (2006), 643. doi: 10.1007/s11401-005-0520-2.

[1]

Markus Dick, Martin Gugat, Günter Leugering. A strict $H^1$-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 225-244. doi: 10.3934/naco.2011.1.225

[2]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[3]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[4]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

[5]

Nguyen H. Sau, Vu N. Phat. LP approach to exponential stabilization of singular linear positive time-delay systems via memory state feedback. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1-14. doi: 10.3934/jimo.2017061

[6]

Gen Qi Xu, Siu Pang Yung. Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping. Networks & Heterogeneous Media, 2008, 3 (4) : 723-747. doi: 10.3934/nhm.2008.3.723

[7]

F. Ali Mehmeti, R. Haller-Dintelmann, V. Régnier. Dispersive waves with multiple tunnel effect on a star-shaped network. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 783-791. doi: 10.3934/dcdss.2013.6.783

[8]

Ben Niu, Weihua Jiang. Dynamics of a limit cycle oscillator with extended delay feedback. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1439-1458. doi: 10.3934/dcdsb.2013.18.1439

[9]

Martin Gugat, Günter Leugering, Ke Wang. Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-Lyapunov function. Mathematical Control & Related Fields, 2017, 7 (3) : 419-448. doi: 10.3934/mcrf.2017015

[10]

Serge Nicaise, Julie Valein. Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks. Networks & Heterogeneous Media, 2007, 2 (3) : 425-479. doi: 10.3934/nhm.2007.2.425

[11]

Wenjun Liu, Biqing Zhu, Gang Li, Danhua Wang. General decay for a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term. Evolution Equations & Control Theory, 2017, 6 (2) : 239-260. doi: 10.3934/eect.2017013

[12]

Mokhtar Kirane, Belkacem Said-Houari, Mohamed Naim Anwar. Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks. Communications on Pure & Applied Analysis, 2011, 10 (2) : 667-686. doi: 10.3934/cpaa.2011.10.667

[13]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

[14]

Hermann Brunner, Stefano Maset. Time transformations for delay differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 751-775. doi: 10.3934/dcds.2009.25.751

[15]

Michael Stich, Carsten Beta. Standing waves in a complex Ginzburg-Landau equation with time-delay feedback. Conference Publications, 2011, 2011 (Special) : 1329-1334. doi: 10.3934/proc.2011.2011.1329

[16]

Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029

[17]

Nguyen Dinh Cong, Thai Son Doan, Stefan Siegmund. On Lyapunov exponents of difference equations with random delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 861-874. doi: 10.3934/dcdsb.2015.20.861

[18]

A. Aschwanden, A. Schulze-Halberg, D. Stoffer. Stable periodic solutions for delay equations with positive feedback - a computer-assisted proof. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 721-736. doi: 10.3934/dcds.2006.14.721

[19]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[20]

Chuandong Li, Fali Ma, Tingwen Huang. 2-D analysis based iterative learning control for linear discrete-time systems with time delay. Journal of Industrial & Management Optimization, 2011, 7 (1) : 175-181. doi: 10.3934/jimo.2011.7.175

2017 Impact Factor: 0.542

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]