June  2011, 1(2): 177-187. doi: 10.3934/mcrf.2011.1.177

Observability of heat processes by transmutation without geometric restrictions

1. 

CNRS, Institut de Mathématiques de Toulouse, UMR 5219, F-31062 Toulouse, France

2. 

Basque Center for Applied Mathematics (BCAM), Bizkaia Technology Park, Building 500, E-48160 Derio - Basque Country, Spain

Received  December 2010 Revised  March 2011 Published  June 2011

The goal of this note is to explain how transmutation techniques (originally introduced in [14] in the context of the control of the heat equation, inspired on the classical Kannai transform, and recently revisited in [4] and adapted to deal with observability problems) can be applied to derive observability results for the heat equation without any geometric restriction on the subset in which the control is being applied, from a good understanding of the wave equation. Our arguments are based on the recent results in [15] on the frequency depending observability inequalities for waves without geometric restrictions, an iteration argument recently developed in [13] and the new representation formulas in [4] allowing to make a link between heat and wave trajectories.
Citation: Sylvain Ervedoza, Enrique Zuazua. Observability of heat processes by transmutation without geometric restrictions. Mathematical Control & Related Fields, 2011, 1 (2) : 177-187. doi: 10.3934/mcrf.2011.1.177
References:
[1]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control and Optim., 30 (1992), 1024. doi: 10.1137/0330055. Google Scholar

[2]

M. Bellassoued, Decay of solutions of the wave equation with arbitrary localized nonlinear damping,, J. Differential Equations, 211 (2005), 303. doi: 10.1016/j.jde.2004.12.010. Google Scholar

[3]

N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, (French) [A necessary and sufficient condition for the exact controllability of the wave equation],, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 749. doi: 10.1016/S0764-4442(97)80053-5. Google Scholar

[4]

S. Ervedoza and E. Zuazua, "Sharp Observability Estimates for the Heat Equation,", preprint, (2011). Google Scholar

[5]

A. V. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolution Equations," Lecture Notes Series, 34,, Seoul National University, (1996). Google Scholar

[6]

L. Hörmander, "Linear Partial Differential Operators,", Springer Verlag, (1976). Google Scholar

[7]

G. Lebeau, Contrôle analytique. I. Estimations a priori, (French) [Analytic control. I. A priori estimates],, Duke Math. J., 68 (1992), 1. doi: 10.1215/S0012-7094-92-06801-3. Google Scholar

[8]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, (French) [Exact control of the heat equation],, Comm. Partial Differential Equations, 20 (1995), 335. doi: 10.1080/03605309508821097. Google Scholar

[9]

G. Lebeau and L. Robbiano, Stabilisation de l'équation des ondes par le bord, (French) [Stabilization of the wave equations by the boundary],, Duke Math. J., 86 (1997), 465. doi: 10.1215/S0012-7094-97-08614-2. Google Scholar

[10]

G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity,, Arch. Rational Mech. Anal., 141 (1998), 297. doi: 10.1007/s002050050078. Google Scholar

[11]

W. Li and X. Zhang, Controllability of parabolic and hyperbolic equations: Toward a unified theory,, in, 242 (2005), 157. Google Scholar

[12]

J.-L. Lions, "Contrôlabilité exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1," (French) [Exact Controllability, Perturbations and Stabilization of Distributed Systems.Vol. 1], Contrôlabilité Exacte, [Exact Controllability], RMA, 8,, Masson, (1988). Google Scholar

[13]

L. Miller, A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1465. doi: 10.3934/dcdsb.2010.14.1465. Google Scholar

[14]

L. Miller, The control transmutation method and the cost of fast controls,, SIAM J. Control Optim., 45 (2006), 762. doi: 10.1137/S0363012904440654. Google Scholar

[15]

K. D. Phung, Waves, damped wave and observation,, in, (2010). Google Scholar

[16]

L. Robbiano, Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques, (French) [Uniqueness theorem adapted to the control of the solutions of hyperbolic problems],, in, (1991). Google Scholar

[17]

L. Robbiano, Fonction de coût et contrôle des solutions des équations hyperboliques, (French) [Cost function and control of solutions of hyperbolic equations],, Asymptotic Anal., 10 (1995), 95. Google Scholar

[18]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions,, SIAM Rev., 20 (1978), 639. doi: 10.1137/1020095. Google Scholar

[19]

X. Zhang, A remark on null exact controllability of the heat equation,, SIAM J. Control Optim., 40 (2001), 39. doi: 10.1137/S0363012900371691. Google Scholar

show all references

References:
[1]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control and Optim., 30 (1992), 1024. doi: 10.1137/0330055. Google Scholar

[2]

M. Bellassoued, Decay of solutions of the wave equation with arbitrary localized nonlinear damping,, J. Differential Equations, 211 (2005), 303. doi: 10.1016/j.jde.2004.12.010. Google Scholar

[3]

N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, (French) [A necessary and sufficient condition for the exact controllability of the wave equation],, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 749. doi: 10.1016/S0764-4442(97)80053-5. Google Scholar

[4]

S. Ervedoza and E. Zuazua, "Sharp Observability Estimates for the Heat Equation,", preprint, (2011). Google Scholar

[5]

A. V. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolution Equations," Lecture Notes Series, 34,, Seoul National University, (1996). Google Scholar

[6]

L. Hörmander, "Linear Partial Differential Operators,", Springer Verlag, (1976). Google Scholar

[7]

G. Lebeau, Contrôle analytique. I. Estimations a priori, (French) [Analytic control. I. A priori estimates],, Duke Math. J., 68 (1992), 1. doi: 10.1215/S0012-7094-92-06801-3. Google Scholar

[8]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, (French) [Exact control of the heat equation],, Comm. Partial Differential Equations, 20 (1995), 335. doi: 10.1080/03605309508821097. Google Scholar

[9]

G. Lebeau and L. Robbiano, Stabilisation de l'équation des ondes par le bord, (French) [Stabilization of the wave equations by the boundary],, Duke Math. J., 86 (1997), 465. doi: 10.1215/S0012-7094-97-08614-2. Google Scholar

[10]

G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity,, Arch. Rational Mech. Anal., 141 (1998), 297. doi: 10.1007/s002050050078. Google Scholar

[11]

W. Li and X. Zhang, Controllability of parabolic and hyperbolic equations: Toward a unified theory,, in, 242 (2005), 157. Google Scholar

[12]

J.-L. Lions, "Contrôlabilité exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1," (French) [Exact Controllability, Perturbations and Stabilization of Distributed Systems.Vol. 1], Contrôlabilité Exacte, [Exact Controllability], RMA, 8,, Masson, (1988). Google Scholar

[13]

L. Miller, A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1465. doi: 10.3934/dcdsb.2010.14.1465. Google Scholar

[14]

L. Miller, The control transmutation method and the cost of fast controls,, SIAM J. Control Optim., 45 (2006), 762. doi: 10.1137/S0363012904440654. Google Scholar

[15]

K. D. Phung, Waves, damped wave and observation,, in, (2010). Google Scholar

[16]

L. Robbiano, Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques, (French) [Uniqueness theorem adapted to the control of the solutions of hyperbolic problems],, in, (1991). Google Scholar

[17]

L. Robbiano, Fonction de coût et contrôle des solutions des équations hyperboliques, (French) [Cost function and control of solutions of hyperbolic equations],, Asymptotic Anal., 10 (1995), 95. Google Scholar

[18]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions,, SIAM Rev., 20 (1978), 639. doi: 10.1137/1020095. Google Scholar

[19]

X. Zhang, A remark on null exact controllability of the heat equation,, SIAM J. Control Optim., 40 (2001), 39. doi: 10.1137/S0363012900371691. Google Scholar

[1]

Luc Miller. A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1465-1485. doi: 10.3934/dcdsb.2010.14.1465

[2]

Imen Benabbas, Djamel Eddine Teniou. Observability of wave equation with Ventcel dynamic condition. Evolution Equations & Control Theory, 2018, 7 (4) : 545-570. doi: 10.3934/eect.2018026

[3]

C. Brändle, E. Chasseigne, Raúl Ferreira. Unbounded solutions of the nonlocal heat equation. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1663-1686. doi: 10.3934/cpaa.2011.10.1663

[4]

Arthur Ramiandrisoa. Nonlinear heat equation: the radial case. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 849-870. doi: 10.3934/dcds.1999.5.849

[5]

Delio Mugnolo. Gaussian estimates for a heat equation on a network. Networks & Heterogeneous Media, 2007, 2 (1) : 55-79. doi: 10.3934/nhm.2007.2.55

[6]

Sergei A. Avdonin, Sergei A. Ivanov, Jun-Min Wang. Inverse problems for the heat equation with memory. Inverse Problems & Imaging, 2019, 13 (1) : 31-38. doi: 10.3934/ipi.2019002

[7]

Arturo de Pablo, Guillermo Reyes, Ariel Sánchez. The Cauchy problem for a nonhomogeneous heat equation with reaction. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 643-662. doi: 10.3934/dcds.2013.33.643

[8]

Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control & Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012

[9]

Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143-150. doi: 10.3934/proc.2009.2009.143

[10]

Yueling Li, Yingchao Xie, Xicheng Zhang. Large deviation principle for stochastic heat equation with memory. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5221-5237. doi: 10.3934/dcds.2015.35.5221

[11]

Thierry Cazenave, Flávio Dickstein, Fred B. Weissler. Universal solutions of the heat equation on $\mathbb R^N$. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1105-1132. doi: 10.3934/dcds.2003.9.1105

[12]

Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations & Control Theory, 2014, 3 (1) : 35-58. doi: 10.3934/eect.2014.3.35

[13]

Antonio Greco, Antonio Iannizzotto. Existence and convexity of solutions of the fractional heat equation. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2201-2226. doi: 10.3934/cpaa.2017109

[14]

Pavol Quittner. The decay of global solutions of a semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 307-318. doi: 10.3934/dcds.2008.21.307

[15]

Jin Takahashi, Eiji Yanagida. Time-dependent singularities in the heat equation. Communications on Pure & Applied Analysis, 2015, 14 (3) : 969-979. doi: 10.3934/cpaa.2015.14.969

[16]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[17]

Filippo Gazzola, Hans-Christoph Grunau. Eventual local positivity for a biharmonic heat equation in RN. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 83-87. doi: 10.3934/dcdss.2008.1.83

[18]

Can Zhang. Quantitative unique continuation for the heat equation with Coulomb potentials. Mathematical Control & Related Fields, 2018, 8 (3&4) : 1097-1116. doi: 10.3934/mcrf.2018047

[19]

Angkana Rüland, Mikko Salo. Quantitative approximation properties for the fractional heat equation. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019027

[20]

Xiangfeng Yang, Yaodong Ni. Extreme values problem of uncertain heat equation. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1995-2008. doi: 10.3934/jimo.2018133

2018 Impact Factor: 1.292

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]