December 2018, 15(6): 1401-1423. doi: 10.3934/mbe.2018064

Dynamics of a stochastic delayed Harrison-type predation model: Effects of delay and stochastic components

1. 

School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China

2. 

Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ 85287-1904, USA

3. 

Sciences and Mathematics Faculty, College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, USA

* Corresponding author: Yun Kang

Received  December 10, 2017 Accepted  June 10, 2018 Published  September 2018

This paper investigates the complex dynamics of a Harrison-type predator-prey model that incorporating: (1) A constant time delay in the functional response term of the predator growth equation; and (2) environmental noise in both prey and predator equations. We provide the rigorous results of our model including the dynamical behaviors of a positive solution and Hopf bifurcation. We also perform numerical simulations on the effects of delay or/and noise when the corresponding ODE model has an interior solution. Our theoretical and numerical results show that delay can either remain stability or destabilize the model; large noise could destabilize the model; and the combination of delay and noise could intensify the periodic instability of the model. Our results may provide us useful biological insights into population managements for prey-predator interaction models.

Citation: Feng Rao, Carlos Castillo-Chavez, Yun Kang. Dynamics of a stochastic delayed Harrison-type predation model: Effects of delay and stochastic components. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1401-1423. doi: 10.3934/mbe.2018064
References:
[1]

J. ArinoL. Wang and G. Wolkowicz, An alternative formulation for a delayed logistic equation, Journal of Theoretical Biology, 241 (2006), 109-119. doi: 10.1016/j.jtbi.2005.11.007.

[2]

M. BandyopadhyayT. Saha and R. Pal, Deterministic and stochastic analysis of a delayed allelopathic phytoplankton model within fluctuating environment, Nonlinear Analysis: Hybrid Systems, 2 (2008), 958-970. doi: 10.1016/j.nahs.2008.04.001.

[3]

Y. CaiY. KangM. Banerjee and W. Wang, A stochastic SIRS epidemic model with infectious force under intervention strategies, Journal of Differential Equations, 259 (2015), 7463-7502. doi: 10.1016/j.jde.2015.08.024.

[4]

Y. CaiY. Kang and W. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Applied Mathematics and Computation, 305 (2017), 221-240. doi: 10.1016/j.amc.2017.02.003.

[5]

Y. CaiY. KangM. Banerjee and W. Wang, Complex dynamics of a host-parasite model with both horizontal and vertical transmissions in a spatial heterogeneous environment, Nonlinear Analysis: Real World Applications, 40 (2018), 444-465. doi: 10.1016/j.nonrwa.2017.10.001.

[6]

Q. HanD. Jiang and C. Ji, Analysis of a delayed stochastic predator-prey model in a polluted environment, Applied Mathematical Modelling, 38 (2014), 3067-3080. doi: 10.1016/j.apm.2013.11.014.

[7]

G. Harrison, Multiple stable equilibria in a predator-prey system, Bulletin of Mathematical Biology, 48 (1986), 137-148. doi: 10.1007/BF02460019.

[8]

G. Harrison, Comparing predator-prey models to luckinbill's experiment with didinium and paramecium, Ecology, 76 (1995), 357-374. doi: 10.2307/1941195.

[9]

Y. Jin, Moment stability for a predator-prey model with parametric dichotomous noises, Chinese Physics B, 24 (2015), 060502-7. doi: 10.1088/1674-1056/24/6/060502.

[10]

Y. Kuang, Delay Differental Equations with Applications in Population Dynamics, Academic Press, San Diego, 1993.

[11]

B. Lian, S. Hu and Y. Fen, Stochastic delay Lotka-Volterra model, Journal of Inequalities and Applications, 2011 (2011), Art. ID 914270, 13 pp. doi: 10.1155/2011/914270.

[12]

M. LiuC. Bai and Y. Jin, Population dynamical behavior of a two-predator one-prey stochastic model with time delay, Discrete and Continuous Dynamical Systems, 37 (2017), 2513-2538. doi: 10.3934/dcds.2017108.

[13]

A. MaitiM. Jana and G. Samanta, Deterministic and stochastic analysis of a ratio-dependent predator-prey system with delay, Nonlinear Analysis: Modelling and Control, 12 (2007), 383-398.

[14]

X. Mao, Stochastic Differential Equations and Applications, Second edition. Horwood Publishing Limited, Chichester, 2008. doi: 10.1533/9780857099402.

[15]

X. Mao, Exponential Stability of Stochastic Differential Equations, Marcel Dekker, New York, 1994.

[16]

X. MaoG. Marion and E. Renshaw, Environmental noise suppresses explosion in population dynamics, Stochastic Processes and their Applications, 97 (2002), 95-110. doi: 10.1016/S0304-4149(01)00126-0.

[17]

X. MaoC. Yuan and J. Zou, Stochastic differential delay equations of population dynamics, Journal of Mathematical Analysis and Applications, 304 (2005), 296-320. doi: 10.1016/j.jmaa.2004.09.027.

[18]

A. Martin and S. Ruan, Predator-prey models with delay and prey harvesting, Journal of Mathematical Biology, 43 (2001), 247-267. doi: 10.1007/s002850100095.

[19]

R. May, Time-delay versus stability in population models with two and three trophic levels, Ecology, 54 (1973), 315-325. doi: 10.2307/1934339.

[20]

R. May, Stability and Complexity in Model Ecosystems, Princeton University Press, New Jersey, 2001.

[21]

J. Murray, Mathematical Biology, 3rd edition, Springer-Verlag, New York, 2003. doi: 10.1007/b98869.

[22]

F. RaoW. Wang and Z. Li, Spatiotemporal complexity of a predator-prey system with the effect of noise and external forcing, Chaos, Solitons and Fractals, 41 (2009), 1634-1644. doi: 10.1016/j.chaos.2008.07.005.

[23]

F. Rao and W. Wang, Dynamics of a Michaelis-Menten-type predation model incorporating a prey refuge with noise and external forces, Journal of Statistical Mechanics: Theory and Experiment, 3 (2012), P03014. doi: 10.1088/1742-5468/2012/03/P03014.

[24]

F. RaoC. Castillo-Chavez and Y. Kang, Dynamics of a diffusion reaction prey-predator model with delay in prey: Effects of delay and spatial components, Journal of Mathematical Analysis and Applications, 461 (2018), 1177-1214. doi: 10.1016/j.jmaa.2018.01.046.

[25]

T. Saha and M. Bandyopadhyay, Dynamical analysis of a delayed ratio-dependent prey-predator model within fluctuating environment, Applied Mathematics and Computation, 196 (2008), 458-478. doi: 10.1016/j.amc.2007.06.017.

[26]

G. Samanta, The effects of random fluctuating environment on interacting species with time delay, International Journal of Mathematical Education in Science and Technology, 27 (1996), 13-21. doi: 10.1080/0020739960270102.

[27]

M. Vasilova, Asymptotic behavior of a stochastic Gilpin-Ayala predator-prey system with time-dependent delay, Mathematical and Computer Modelling, 57 (2013), 764-781. doi: 10.1016/j.mcm.2012.09.002.

[28]

W. WangY. CaiJ. Li and Z. Gui, Periodic behavior in a FIV model with seasonality as well as environment fluctuations, Journal of the Franklin Institute, 354 (2017), 7410-7428. doi: 10.1016/j.jfranklin.2017.08.034.

[29]

X. Wang and Y. Cai, Cross-diffusion-driven instability in a reaction-diffusion Harrison predator-prey model, Abstract and Applied Analysis, 2013 (2013), Art. ID 306467, 9 pp.

[30]

W. WangY. ZhuY. Cai and W. Wang, Dynamical complexity induced by Allee effect in a predator-prey model, Nonlinear Analysis: Real World Applications, 16 (2014), 103-119. doi: 10.1016/j.nonrwa.2013.09.010.

[31]

Y. Zhu, Y. Cai, S. Yan and W. Wang, Dynamical analysis of a delayed reaction-diffusion predator-prey system, Abstract and Applied Analysis, 2012 (2012), Art. ID 323186, 23 pp.

show all references

References:
[1]

J. ArinoL. Wang and G. Wolkowicz, An alternative formulation for a delayed logistic equation, Journal of Theoretical Biology, 241 (2006), 109-119. doi: 10.1016/j.jtbi.2005.11.007.

[2]

M. BandyopadhyayT. Saha and R. Pal, Deterministic and stochastic analysis of a delayed allelopathic phytoplankton model within fluctuating environment, Nonlinear Analysis: Hybrid Systems, 2 (2008), 958-970. doi: 10.1016/j.nahs.2008.04.001.

[3]

Y. CaiY. KangM. Banerjee and W. Wang, A stochastic SIRS epidemic model with infectious force under intervention strategies, Journal of Differential Equations, 259 (2015), 7463-7502. doi: 10.1016/j.jde.2015.08.024.

[4]

Y. CaiY. Kang and W. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Applied Mathematics and Computation, 305 (2017), 221-240. doi: 10.1016/j.amc.2017.02.003.

[5]

Y. CaiY. KangM. Banerjee and W. Wang, Complex dynamics of a host-parasite model with both horizontal and vertical transmissions in a spatial heterogeneous environment, Nonlinear Analysis: Real World Applications, 40 (2018), 444-465. doi: 10.1016/j.nonrwa.2017.10.001.

[6]

Q. HanD. Jiang and C. Ji, Analysis of a delayed stochastic predator-prey model in a polluted environment, Applied Mathematical Modelling, 38 (2014), 3067-3080. doi: 10.1016/j.apm.2013.11.014.

[7]

G. Harrison, Multiple stable equilibria in a predator-prey system, Bulletin of Mathematical Biology, 48 (1986), 137-148. doi: 10.1007/BF02460019.

[8]

G. Harrison, Comparing predator-prey models to luckinbill's experiment with didinium and paramecium, Ecology, 76 (1995), 357-374. doi: 10.2307/1941195.

[9]

Y. Jin, Moment stability for a predator-prey model with parametric dichotomous noises, Chinese Physics B, 24 (2015), 060502-7. doi: 10.1088/1674-1056/24/6/060502.

[10]

Y. Kuang, Delay Differental Equations with Applications in Population Dynamics, Academic Press, San Diego, 1993.

[11]

B. Lian, S. Hu and Y. Fen, Stochastic delay Lotka-Volterra model, Journal of Inequalities and Applications, 2011 (2011), Art. ID 914270, 13 pp. doi: 10.1155/2011/914270.

[12]

M. LiuC. Bai and Y. Jin, Population dynamical behavior of a two-predator one-prey stochastic model with time delay, Discrete and Continuous Dynamical Systems, 37 (2017), 2513-2538. doi: 10.3934/dcds.2017108.

[13]

A. MaitiM. Jana and G. Samanta, Deterministic and stochastic analysis of a ratio-dependent predator-prey system with delay, Nonlinear Analysis: Modelling and Control, 12 (2007), 383-398.

[14]

X. Mao, Stochastic Differential Equations and Applications, Second edition. Horwood Publishing Limited, Chichester, 2008. doi: 10.1533/9780857099402.

[15]

X. Mao, Exponential Stability of Stochastic Differential Equations, Marcel Dekker, New York, 1994.

[16]

X. MaoG. Marion and E. Renshaw, Environmental noise suppresses explosion in population dynamics, Stochastic Processes and their Applications, 97 (2002), 95-110. doi: 10.1016/S0304-4149(01)00126-0.

[17]

X. MaoC. Yuan and J. Zou, Stochastic differential delay equations of population dynamics, Journal of Mathematical Analysis and Applications, 304 (2005), 296-320. doi: 10.1016/j.jmaa.2004.09.027.

[18]

A. Martin and S. Ruan, Predator-prey models with delay and prey harvesting, Journal of Mathematical Biology, 43 (2001), 247-267. doi: 10.1007/s002850100095.

[19]

R. May, Time-delay versus stability in population models with two and three trophic levels, Ecology, 54 (1973), 315-325. doi: 10.2307/1934339.

[20]

R. May, Stability and Complexity in Model Ecosystems, Princeton University Press, New Jersey, 2001.

[21]

J. Murray, Mathematical Biology, 3rd edition, Springer-Verlag, New York, 2003. doi: 10.1007/b98869.

[22]

F. RaoW. Wang and Z. Li, Spatiotemporal complexity of a predator-prey system with the effect of noise and external forcing, Chaos, Solitons and Fractals, 41 (2009), 1634-1644. doi: 10.1016/j.chaos.2008.07.005.

[23]

F. Rao and W. Wang, Dynamics of a Michaelis-Menten-type predation model incorporating a prey refuge with noise and external forces, Journal of Statistical Mechanics: Theory and Experiment, 3 (2012), P03014. doi: 10.1088/1742-5468/2012/03/P03014.

[24]

F. RaoC. Castillo-Chavez and Y. Kang, Dynamics of a diffusion reaction prey-predator model with delay in prey: Effects of delay and spatial components, Journal of Mathematical Analysis and Applications, 461 (2018), 1177-1214. doi: 10.1016/j.jmaa.2018.01.046.

[25]

T. Saha and M. Bandyopadhyay, Dynamical analysis of a delayed ratio-dependent prey-predator model within fluctuating environment, Applied Mathematics and Computation, 196 (2008), 458-478. doi: 10.1016/j.amc.2007.06.017.

[26]

G. Samanta, The effects of random fluctuating environment on interacting species with time delay, International Journal of Mathematical Education in Science and Technology, 27 (1996), 13-21. doi: 10.1080/0020739960270102.

[27]

M. Vasilova, Asymptotic behavior of a stochastic Gilpin-Ayala predator-prey system with time-dependent delay, Mathematical and Computer Modelling, 57 (2013), 764-781. doi: 10.1016/j.mcm.2012.09.002.

[28]

W. WangY. CaiJ. Li and Z. Gui, Periodic behavior in a FIV model with seasonality as well as environment fluctuations, Journal of the Franklin Institute, 354 (2017), 7410-7428. doi: 10.1016/j.jfranklin.2017.08.034.

[29]

X. Wang and Y. Cai, Cross-diffusion-driven instability in a reaction-diffusion Harrison predator-prey model, Abstract and Applied Analysis, 2013 (2013), Art. ID 306467, 9 pp.

[30]

W. WangY. ZhuY. Cai and W. Wang, Dynamical complexity induced by Allee effect in a predator-prey model, Nonlinear Analysis: Real World Applications, 16 (2014), 103-119. doi: 10.1016/j.nonrwa.2013.09.010.

[31]

Y. Zhu, Y. Cai, S. Yan and W. Wang, Dynamical analysis of a delayed reaction-diffusion predator-prey system, Abstract and Applied Analysis, 2012 (2012), Art. ID 323186, 23 pp.

Figure 1.  Phase portrait of model (2) and the parameters are taken as $c = 0.9, \, b = 0.7, \, d = 0.3, \, m = 0.1$. The horizontal axis is prey population $N$ and the vertical axis is predator population $P$. The red dotted curve is the $N$-isoline $cP = (1-N)(mP+1)$ and the yellow solid curve is the $P$-isoline $bN = d(mP+1)$. Both $E_0 = (0, 0)$ and $E_1 = (1, 0)$ are saddle points, $E^* = (0.46, 0.64)$ is locally asymptotically stable
Figure 2.  The effects of the time delay $\tau$ on the dynamics of the DDE model (4) when $c = 0.9, \, b = 0.7, \, d = 0.3, \, m = 0.1$ which are the same as in Fig. 1. In the figures of time series, the red curve is the population of $N$ and the blue curve is the population of $P$
Figure 3.  Time-series plots of model (3) without time-delay and only with different noises $\sigma_1, \, \sigma_2$, and other parametric values are $\tau = 0, \, c = 0.9, \, b = 0.7, \, d = 0.3, \, m = 0.1$
Figure 4.  Time-series plots of the SDDE model (3) for different noise $\sigma_1, \, \sigma_2$ with time delay $\tau = 2.8 < \tau_0 = 3.46$, other parametric values are given as (16)
Figure 5.  Time-series plots of the SDDE model (3) for different noise $\sigma_1, \, \sigma_2$ with $\tau = 3.9>\tau_0 = 3.46$, other parametric values are given as (16)
Table 1.  The existence and stability of equilibria for model (2) where $N^* = \frac{b(m-c)+\sqrt{4bcdm+b^2(m-c)^2}}{2bm}, \, P^* = \frac{bN^*-d}{dm}$
Equilibrium Existence Condition Stability Condition
$(0, 0)$ Always exists Always saddle
$(1, 0)$ Always exists Sink if $d\geq b$;
Saddle if $d < b$
$(N^*, P^*)$ $d < b$ Always sink
Equilibrium Existence Condition Stability Condition
$(0, 0)$ Always exists Always saddle
$(1, 0)$ Always exists Sink if $d\geq b$;
Saddle if $d < b$
$(N^*, P^*)$ $d < b$ Always sink
[1]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[2]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

[3]

Meng Liu, Chuanzhi Bai, Yi Jin. Population dynamical behavior of a two-predator one-prey stochastic model with time delay. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2513-2538. doi: 10.3934/dcds.2017108

[4]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

[5]

Isam Al-Darabsah, Xianhua Tang, Yuan Yuan. A prey-predator model with migrations and delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 737-761. doi: 10.3934/dcdsb.2016.21.737

[6]

Meng Zhao, Wan-Tong Li, Jia-Feng Cao. A prey-predator model with a free boundary and sign-changing coefficient in time-periodic environment. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3295-3316. doi: 10.3934/dcdsb.2017138

[7]

R. P. Gupta, Peeyush Chandra, Malay Banerjee. Dynamical complexity of a prey-predator model with nonlinear predator harvesting. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 423-443. doi: 10.3934/dcdsb.2015.20.423

[8]

Sampurna Sengupta, Pritha Das, Debasis Mukherjee. Stochastic non-autonomous Holling type-Ⅲ prey-predator model with predator's intra-specific competition. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3275-3296. doi: 10.3934/dcdsb.2018244

[9]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[10]

Xinfu Chen, Yuanwei Qi, Mingxin Wang. Steady states of a strongly coupled prey-predator model. Conference Publications, 2005, 2005 (Special) : 173-180. doi: 10.3934/proc.2005.2005.173

[11]

Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536

[12]

Mingxin Wang, Peter Y. H. Pang. Qualitative analysis of a diffusive variable-territory prey-predator model. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 1061-1072. doi: 10.3934/dcds.2009.23.1061

[13]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[14]

J. Gani, R. J. Swift. Prey-predator models with infected prey and predators. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5059-5066. doi: 10.3934/dcds.2013.33.5059

[15]

Tomás Caraballo, Renato Colucci, Luca Guerrini. On a predator prey model with nonlinear harvesting and distributed delay. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2703-2727. doi: 10.3934/cpaa.2018128

[16]

Tomás Caraballo, Leonid Shaikhet. Stability of delay evolution equations with stochastic perturbations. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2095-2113. doi: 10.3934/cpaa.2014.13.2095

[17]

Komi Messan, Yun Kang. A two patch prey-predator model with multiple foraging strategies in predator: Applications to insects. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 947-976. doi: 10.3934/dcdsb.2017048

[18]

Yun Kang, Sourav Kumar Sasmal, Komi Messan. A two-patch prey-predator model with predator dispersal driven by the predation strength. Mathematical Biosciences & Engineering, 2017, 14 (4) : 843-880. doi: 10.3934/mbe.2017046

[19]

Wenjie Ni, Mingxin Wang. Dynamical properties of a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3409-3420. doi: 10.3934/dcdsb.2017172

[20]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (54)
  • HTML views (76)
  • Cited by (0)

Other articles
by authors

[Back to Top]