October 2018, 15(5): 1243-1254. doi: 10.3934/mbe.2018057

The four-dimensional Kirschner-Panetta type cancer model: How to obtain tumor eradication?

1. 

Bauman Moscow State Technical University, 2-aya Baumanskaya ul., 5, Moscow 105005, Russia

2. 

Instituto Politecnico Nacional, CITEDI, Avenida IPN N 1310, Nueva Tijuana, Tijuana 22510, B.C., Mexico

* Corresponding author: kstarkov@ipn.mx; konstarkov@hotmail.com

Received  January 03, 2017 Revised  March 06, 2018 Published  May 2018

In this paper we examine ultimate dynamics of the four-dimensional model describing interactions between tumor cells, effector immune cells, interleukin -2 and transforming growth factor-beta. This model was elaborated by Arciero et al. and is obtained from the Kirschner-Panetta type model by introducing two various treatments. We provide ultimate upper bounds for all variables of this model and two lower bounds and, besides, study when dynamics of this model possesses a global attracting set. The nonexistence conditions of compact invariant sets are derived. We obtain bounds for treatment parameters $s_{1, 2}$ under which all trajectories in the positive orthant tend to the tumor-free equilibrium point. Conditions imposed on $s_{1, 2}$ under which the tumor population persists are presented as well. Finally, we compare tumor eradication/ persistence bounds and discuss our results.

Citation: Alexander P. Krishchenko, Konstantin E. Starkov. The four-dimensional Kirschner-Panetta type cancer model: How to obtain tumor eradication?. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1243-1254. doi: 10.3934/mbe.2018057
References:
[1]

J. C. ArcieroT. L. Jackson and D. E. Kirschner, A mathematical model of tumor-immune evasion and siRNA treatment, Discrete Contin. Dynamic. Syst. Ser. B, 4 (2004), 39-58.

[2]

D. Kirschner and J. Panetta, Modelling immunotherapy of the tumor-immune interaction, J. Math. Biol., 37 (1998), 235-252.

[3]

D. Kirschner and A. V. Tsygvintsev, On the global dynamics of a model for tumor immunotherapy, Math. Biosci. Engin., 6 (2009), 573-583. doi: 10.3934/mbe.2009.6.573.

[4]

A. P. Krishchenko, Estimations of domains with cycles, Comput. & Math. Appl., 34 (1997), 325-332. doi: 10.1016/S0898-1221(97)00130-2.

[5]

A. P. Krishchenko, Localization of invariant compact sets of dynamical systems, Differential Equations, 41 (2005), 1669-1676. doi: 10.1007/s10625-006-0003-6.

[6]

A. P. Krishchenko and K. E. Starkov, Localization of compact invariant sets of the Lorenz system, Phys. Lett. A, 353 (2006), 383-388. doi: 10.1016/j.physleta.2005.12.104.

[7]

A. P. Krishchenko and K. E. Starkov, On the global dynamics of a chronic myelogenous leukemia model, Commun. Nonlin. Sci. Numer. Simul., 33 (2016), 174-183. doi: 10.1016/j.cnsns.2015.10.001.

[8]

F. Salazar-Onfray, Interleukin-10: A cytokine used by tumors to escape immunosurveillance, Medical Oncology, 16 (1999), 86-94. doi: 10.1007/BF02785841.

[9]

K. E. Starkov, On dynamic tumor eradication conditions under combined chemical/anti-angiogenic therapies, Phys. Lett. A, 382 (2018), 387-393. doi: 10.1016/j.physleta.2017.12.025.

[10]

K. E. Starkov and S. Bunimovich-Mendrazitsky, Dynamical properties and tumor clearance conditions for a nine-dimensional model of bladder cancer immunotherapy, Math. Biosci. Eng., 13 (2016), 1059-1075. doi: 10.3934/mbe.2016030.

[11]

K. E. Starkov and D. Gamboa, Localization of compact invariant sets and global stability in analysis of one tumor growth model, Mathematical Methods in the Applied Sciences, 37 (2014), 2854-2863. doi: 10.1002/mma.3023.

[12]

K. E. Starkov and L. Jimenez Beristain, Dynamic analysis of the melanoma model: from cancer persistence to its eradication Internat. J. Bifur. Chaos Appl. Sci. Engrg. , 27 (2017), 1750151, 11pp. doi: 10.1142/S0218127417501516.

[13]

K. E. Starkov and A. P. Krishchenko, On the global dynamics of one cancer tumor growth model, Commun. Nonlin. Sci. Numer. Simul., 19 (2014), 1486-1495. doi: 10.1016/j.cnsns.2013.09.023.

[14]

K. E. Starkov and A. P. Krishchenko, Ultimate dynamics of the Kirschner-Panetta model: Tumor eradication and related problems, Phys. Lett. A, 381 (2017), 3409-3416. doi: 10.1016/j.physleta.2017.08.048.

[15]

K. E. Starkov and A. Pogromsky, Global dynamics of the Owen-Sherratt model describing the tumor-macrophage interactions, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350020, 9pp. doi: 10.1142/S021812741350020X.

[16]

K. E. de Visser and W. M. Kast, Effects of TGF-ß on the immune system: Implications for cancer immunotherapy, Journal of Immunotherapy, 20 (1997), 165-177.

[17]

S. Wojtowicz-Praga, Reversal of tumor-induced immunosuppression: A new approach to cancer therapy, Journal of Immunotherapy, 20 (1997), 165-177. doi: 10.1097/00002371-199705000-00001.

show all references

References:
[1]

J. C. ArcieroT. L. Jackson and D. E. Kirschner, A mathematical model of tumor-immune evasion and siRNA treatment, Discrete Contin. Dynamic. Syst. Ser. B, 4 (2004), 39-58.

[2]

D. Kirschner and J. Panetta, Modelling immunotherapy of the tumor-immune interaction, J. Math. Biol., 37 (1998), 235-252.

[3]

D. Kirschner and A. V. Tsygvintsev, On the global dynamics of a model for tumor immunotherapy, Math. Biosci. Engin., 6 (2009), 573-583. doi: 10.3934/mbe.2009.6.573.

[4]

A. P. Krishchenko, Estimations of domains with cycles, Comput. & Math. Appl., 34 (1997), 325-332. doi: 10.1016/S0898-1221(97)00130-2.

[5]

A. P. Krishchenko, Localization of invariant compact sets of dynamical systems, Differential Equations, 41 (2005), 1669-1676. doi: 10.1007/s10625-006-0003-6.

[6]

A. P. Krishchenko and K. E. Starkov, Localization of compact invariant sets of the Lorenz system, Phys. Lett. A, 353 (2006), 383-388. doi: 10.1016/j.physleta.2005.12.104.

[7]

A. P. Krishchenko and K. E. Starkov, On the global dynamics of a chronic myelogenous leukemia model, Commun. Nonlin. Sci. Numer. Simul., 33 (2016), 174-183. doi: 10.1016/j.cnsns.2015.10.001.

[8]

F. Salazar-Onfray, Interleukin-10: A cytokine used by tumors to escape immunosurveillance, Medical Oncology, 16 (1999), 86-94. doi: 10.1007/BF02785841.

[9]

K. E. Starkov, On dynamic tumor eradication conditions under combined chemical/anti-angiogenic therapies, Phys. Lett. A, 382 (2018), 387-393. doi: 10.1016/j.physleta.2017.12.025.

[10]

K. E. Starkov and S. Bunimovich-Mendrazitsky, Dynamical properties and tumor clearance conditions for a nine-dimensional model of bladder cancer immunotherapy, Math. Biosci. Eng., 13 (2016), 1059-1075. doi: 10.3934/mbe.2016030.

[11]

K. E. Starkov and D. Gamboa, Localization of compact invariant sets and global stability in analysis of one tumor growth model, Mathematical Methods in the Applied Sciences, 37 (2014), 2854-2863. doi: 10.1002/mma.3023.

[12]

K. E. Starkov and L. Jimenez Beristain, Dynamic analysis of the melanoma model: from cancer persistence to its eradication Internat. J. Bifur. Chaos Appl. Sci. Engrg. , 27 (2017), 1750151, 11pp. doi: 10.1142/S0218127417501516.

[13]

K. E. Starkov and A. P. Krishchenko, On the global dynamics of one cancer tumor growth model, Commun. Nonlin. Sci. Numer. Simul., 19 (2014), 1486-1495. doi: 10.1016/j.cnsns.2013.09.023.

[14]

K. E. Starkov and A. P. Krishchenko, Ultimate dynamics of the Kirschner-Panetta model: Tumor eradication and related problems, Phys. Lett. A, 381 (2017), 3409-3416. doi: 10.1016/j.physleta.2017.08.048.

[15]

K. E. Starkov and A. Pogromsky, Global dynamics of the Owen-Sherratt model describing the tumor-macrophage interactions, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350020, 9pp. doi: 10.1142/S021812741350020X.

[16]

K. E. de Visser and W. M. Kast, Effects of TGF-ß on the immune system: Implications for cancer immunotherapy, Journal of Immunotherapy, 20 (1997), 165-177.

[17]

S. Wojtowicz-Praga, Reversal of tumor-induced immunosuppression: A new approach to cancer therapy, Journal of Immunotherapy, 20 (1997), 165-177. doi: 10.1097/00002371-199705000-00001.

[1]

Denise E. Kirschner, Alexei Tsygvintsev. On the global dynamics of a model for tumor immunotherapy. Mathematical Biosciences & Engineering, 2009, 6 (3) : 573-583. doi: 10.3934/mbe.2009.6.573

[2]

Amy H. Lin. A model of tumor and lymphocyte interactions. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 241-266. doi: 10.3934/dcdsb.2004.4.241

[3]

Elena Izquierdo-Kulich, José Manuel Nieto-Villar. Mesoscopic model for tumor growth. Mathematical Biosciences & Engineering, 2007, 4 (4) : 687-698. doi: 10.3934/mbe.2007.4.687

[4]

Mohammad A. Tabatabai, Wayne M. Eby, Karan P. Singh, Sejong Bae. T model of growth and its application in systems of tumor-immune dynamics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 925-938. doi: 10.3934/mbe.2013.10.925

[5]

Kentarou Fujie, Akio Ito, Michael Winkler, Tomomi Yokota. Stabilization in a chemotaxis model for tumor invasion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 151-169. doi: 10.3934/dcds.2016.36.151

[6]

Daniel Vasiliu, Jianjun Paul Tian. Periodic solutions of a model for tumor virotherapy. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1587-1597. doi: 10.3934/dcdss.2011.4.1587

[7]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[8]

Yang Kuang, John D. Nagy, James J. Elser. Biological stoichiometry of tumor dynamics: Mathematical models and analysis. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 221-240. doi: 10.3934/dcdsb.2004.4.221

[9]

Yangjin Kim, Hans G. Othmer. Hybrid models of cell and tissue dynamics in tumor growth. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1141-1156. doi: 10.3934/mbe.2015.12.1141

[10]

Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, Magda Lopes Texeira, José Manuel Nieto-Villar. The dynamics of tumor growth and cells pattern morphology. Mathematical Biosciences & Engineering, 2009, 6 (3) : 547-559. doi: 10.3934/mbe.2009.6.547

[11]

Janet Dyson, Eva Sánchez, Rosanna Villella-Bressan, Glenn F. Webb. An age and spatially structured model of tumor invasion with haptotaxis. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 45-60. doi: 10.3934/dcdsb.2007.8.45

[12]

Jianjun Paul Tian, Kendall Stone, Thomas John Wallin. A simplified mathematical model of solid tumor regrowth with therapies. Conference Publications, 2009, 2009 (Special) : 771-779. doi: 10.3934/proc.2009.2009.771

[13]

Zhan Chen, Yuting Zou. A multiscale model for heterogeneous tumor spheroid in vitro. Mathematical Biosciences & Engineering, 2018, 15 (2) : 361-392. doi: 10.3934/mbe.2018016

[14]

Youshan Tao, J. Ignacio Tello. Nonlinear stability of a heterogeneous state in a PDE-ODE model for acid-mediated tumor invasion. Mathematical Biosciences & Engineering, 2016, 13 (1) : 193-207. doi: 10.3934/mbe.2016.13.193

[15]

Elena Izquierdo-Kulich, José Manuel Nieto-Villar. Morphogenesis of the tumor patterns. Mathematical Biosciences & Engineering, 2008, 5 (2) : 299-313. doi: 10.3934/mbe.2008.5.299

[16]

Katarzyna A. Rejniak. A Single-Cell Approach in Modeling the Dynamics of Tumor Microregions. Mathematical Biosciences & Engineering, 2005, 2 (3) : 643-655. doi: 10.3934/mbe.2005.2.643

[17]

Ahuod Alsheri, Ebraheem O. Alzahrani, Asim Asiri, Mohamed M. El-Dessoky, Yang Kuang. Tumor growth dynamics with nutrient limitation and cell proliferation time delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3771-3782. doi: 10.3934/dcdsb.2017189

[18]

Urszula Ledzewicz, Mohammad Naghnaeian, Heinz Schättler. Dynamics of tumor-immune interaction under treatment as an optimal control problem. Conference Publications, 2011, 2011 (Special) : 971-980. doi: 10.3934/proc.2011.2011.971

[19]

Mengli Hao, Ting Gao, Jinqiao Duan, Wei Xu. Non-Gaussian dynamics of a tumor growth system with immunization. Inverse Problems & Imaging, 2013, 7 (3) : 697-716. doi: 10.3934/ipi.2013.7.697

[20]

Risei Kano, Akio Ito. The existence of time global solutions for tumor invasion models with constraints. Conference Publications, 2011, 2011 (Special) : 774-783. doi: 10.3934/proc.2011.2011.774

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (58)
  • HTML views (123)
  • Cited by (0)

[Back to Top]