• Previous Article
    A dynamic model of CT scans for quantifying doubling time of ground glass opacities using histogram analysis
  • MBE Home
  • This Issue
  • Next Article
    The four-dimensional Kirschner-Panetta type cancer model: How to obtain tumor eradication?
October 2018, 15(5): 1225-1242. doi: 10.3934/mbe.2018056

Analysis of a mathematical model for brain lactate kinetics

1. 

Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR CNRS 7348, Equipe DACTIM-MIS, CHU de Poitiers, 2 Rue de la Milétrie, F-86021 Poitiers, France

2. 

Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR CNRS 7348, Equipe DACTIM-MIS, Boulevard Marie et Pierre Curie - Téléport 2, F-86962 Chasseneuil Futuroscope Cedex, France

* Corresponding author: angelique.perrillat@math.univ-poitiers.fr

Received  October 20, 2017 Revised  January 27, 2018 Published  May 2018

The aim of this article is to study the well-posedness and properties of a fast-slow system which is related with brain lactate kinetics. In particular, we prove the existence and uniqueness of nonnegative solutions and obtain linear stability results. We also give numerical simulations with different values of the small parameter $\varepsilon$ and compare them with experimental data.

Citation: Carole Guillevin, Rémy Guillevin, Alain Miranville, Angélique Perrillat-Mercerot. Analysis of a mathematical model for brain lactate kinetics. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1225-1242. doi: 10.3934/mbe.2018056
References:
[1]

A. Aubert and R. Costalat, Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism, Journal of Cerebral Blood Flow & Metabolism, 25 (2005), 1476-1490. doi: 10.1038/sj.jcbfm.9600144.

[2]

A. AubertR. CostalatP. MagistrettiJ. Pierre and L. Pellerin, Brain lactate kinetics: modeling evidence for neuronal lactate uptake upon activation, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005), 16448-16453. doi: 10.1073/pnas.0505427102.

[3]

M. CloutierF. B. BolgerJ. P. Lowry and P. Wellstead, An integrative dynamic model of brain energy metabolism using in vivo neurochemical measurements, Journal of Computational Neuroscience, 27 (2009), 391-414. doi: 10.1007/s10827-009-0152-8.

[4]

R. CostalatJ.-P. FrançoiseC. MenuelM. LahutteJ.-N. ValléeG. De MarcoJ. Chiras and R. Guillevin, Mathematical modeling of metabolism and hemodynamics, Acta Biotheoretica, 60 (2012), 99-107. doi: 10.1007/s10441-012-9157-1.

[5]

C. E. GriguerC. R. Oliva and G. Y. Gillespie, Glucose metabolism heterogeneity in human and mouse malignant glioma cell lines, Journal of Neuro-oncology, 74 (2005), 123-133. doi: 10.1007/s11060-004-6404-6.

[6]

R. GuillevinC. MenuelJ.-N. ValléeJ.-P. FrançoiseL. CapelleC. HabasG. De MarcoJ. Chiras and R. Costalat, Mathematical modeling of energy metabolism and hemodynamics of WHO grade Ⅱ gliomas using in vivo MR data, Comptes rendus biologies, 334 (2011), 31-38. doi: 10.1016/j.crvi.2010.11.002.

[7]

M. Lahutte-Auboin, R. Costalat, J.-P. Françoise, R. Guillevin, Dip and Buffering in a fast-slow system associated to Brain Lactacte Kinetics, preprint, arXiv: 1308.0486.

[8]

M. Lahutte-AuboinR. GuillevinJ.-P. FrançoiseJ.-N. Vallée and R. Costalat, On a minimal model for hemodynamics and metabolism of lactate : application to low grade glioma and therapeutic strategies, Acta Biotheoretica, 61 (2013), 79-89. doi: 10.1007/s10441-013-9174-8.

[9]

P. J. Magistretti and I. Allaman, A cellular perspective on brain energy metabolism and functional imaging, Neuron, 86 (2015), 883-901. doi: 10.1016/j.neuron.2015.03.035.

[10]

S. MangiaG. GarreffaM. BianciardiF. GioveF. Di Salle and B. Maraviglia, The aerobic brain: Lactate decrease at the onset of neural activity, Neuroscience, 118 (2003), 7-10. doi: 10.1016/S0306-4522(02)00792-3.

[11]

J. R. Mangiardi and P. Yodice, Metabolism of the malignant astrocytoma, Neurosurgery, 26 (1990), 1-19.

show all references

References:
[1]

A. Aubert and R. Costalat, Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism, Journal of Cerebral Blood Flow & Metabolism, 25 (2005), 1476-1490. doi: 10.1038/sj.jcbfm.9600144.

[2]

A. AubertR. CostalatP. MagistrettiJ. Pierre and L. Pellerin, Brain lactate kinetics: modeling evidence for neuronal lactate uptake upon activation, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005), 16448-16453. doi: 10.1073/pnas.0505427102.

[3]

M. CloutierF. B. BolgerJ. P. Lowry and P. Wellstead, An integrative dynamic model of brain energy metabolism using in vivo neurochemical measurements, Journal of Computational Neuroscience, 27 (2009), 391-414. doi: 10.1007/s10827-009-0152-8.

[4]

R. CostalatJ.-P. FrançoiseC. MenuelM. LahutteJ.-N. ValléeG. De MarcoJ. Chiras and R. Guillevin, Mathematical modeling of metabolism and hemodynamics, Acta Biotheoretica, 60 (2012), 99-107. doi: 10.1007/s10441-012-9157-1.

[5]

C. E. GriguerC. R. Oliva and G. Y. Gillespie, Glucose metabolism heterogeneity in human and mouse malignant glioma cell lines, Journal of Neuro-oncology, 74 (2005), 123-133. doi: 10.1007/s11060-004-6404-6.

[6]

R. GuillevinC. MenuelJ.-N. ValléeJ.-P. FrançoiseL. CapelleC. HabasG. De MarcoJ. Chiras and R. Costalat, Mathematical modeling of energy metabolism and hemodynamics of WHO grade Ⅱ gliomas using in vivo MR data, Comptes rendus biologies, 334 (2011), 31-38. doi: 10.1016/j.crvi.2010.11.002.

[7]

M. Lahutte-Auboin, R. Costalat, J.-P. Françoise, R. Guillevin, Dip and Buffering in a fast-slow system associated to Brain Lactacte Kinetics, preprint, arXiv: 1308.0486.

[8]

M. Lahutte-AuboinR. GuillevinJ.-P. FrançoiseJ.-N. Vallée and R. Costalat, On a minimal model for hemodynamics and metabolism of lactate : application to low grade glioma and therapeutic strategies, Acta Biotheoretica, 61 (2013), 79-89. doi: 10.1007/s10441-013-9174-8.

[9]

P. J. Magistretti and I. Allaman, A cellular perspective on brain energy metabolism and functional imaging, Neuron, 86 (2015), 883-901. doi: 10.1016/j.neuron.2015.03.035.

[10]

S. MangiaG. GarreffaM. BianciardiF. GioveF. Di Salle and B. Maraviglia, The aerobic brain: Lactate decrease at the onset of neural activity, Neuroscience, 118 (2003), 7-10. doi: 10.1016/S0306-4522(02)00792-3.

[11]

J. R. Mangiardi and P. Yodice, Metabolism of the malignant astrocytoma, Neurosurgery, 26 (1990), 1-19.

Figure 1.  Schematic representation of lactate exchanges in a local brain part. There is a cotransport through the brain-blood barrier, a blood flow, cell creation and consumption and interactions between a cell and its neighborhood. Interactions are described in the main text
Figure 2.  The functions $F$ and $J$; $F$ is a periodic function while $J$ is a monotone decreasing function of $u$
Figure 3.  Intracellular and capillary lactate dynamics with nonconstant functions $J$ and $F$. On the left, the intracellular lactate trajectory is upper bounded. On the right, the capillary lactate trajectory is upper bounded too, but has an initial dip. At the bottom the orbit is typical of fast-slow systems
Figure 4.  Intracellular and capillary lactate dynamics with constant functions $J$ and $F$. The intracellular lactate trajectory (on the left) and the capillary lactate trajectory (on the right) are both upper bounded and reach the corresponding steady state. The trajectories for the original system (with $\varepsilon >0$) are also lower bounded. On the right top corner the capillary lactate of the original system has an initial dip, while it does not exist on the capillary lactate curve of the limit system (right bottom corner)
Figure 5.  Dynamics for different values of $\varepsilon$. On the left intracellular; the lactate trajectories seem not to differ a lot. On the right, the value of $\varepsilon$ is related to the dip stiffness for the capillary lactate trajectories
Figure 6.  Dynamics for different values for $J$. On the right, the intracellular lactate trajectories are divided into two groups : for $J \in \{1, 0.1, 0.01 \}$, the concentration seems to explode, while for $J \in \{0.001, 0.0001\}$, it seems more stable. On the right the capillary lactate trajectories are devided into these two groups. For the first one, we can see a dip, while, for the second one, the steady state is not quickly reached
Figure 7.  Lactate concentration changes in a local brain part. Lactate concentration is given in mM (vertical axis) and time in days (horizontal axis). The red dots stand for medical data values, while the model simulations are displayed in continuous lines. While the four first patients exhibit Grompertz growth of their brain lactate concentration, patient 5 lactate concentration decreases in time. All the dynamics simulations tend to the steady state given in section 2
Table 1.  Parameters for $F$ and $J$
ParameterValueUnit
$F_0$0.012s$^{-1}$
$\alpha_f$0.5 $1$
$t_i$50 $s$
$t_f$100 $s$
$C_J$5.7*10$^{-5}$ $mM^2.s^{-1}$
$\varepsilon_J$0.001 $mM$
$G_J$0.002 $mM.s^{-1}$
$L_J$0.001 $mM.s^{-1}$
ParameterValueUnit
$F_0$0.012s$^{-1}$
$\alpha_f$0.5 $1$
$t_i$50 $s$
$t_f$100 $s$
$C_J$5.7*10$^{-5}$ $mM^2.s^{-1}$
$\varepsilon_J$0.001 $mM$
$G_J$0.002 $mM.s^{-1}$
$L_J$0.001 $mM.s^{-1}$
Table 2.  Parameters values
ParameterValueUnit
$T$0.01mM.s$^{-1}$
$k$3.5mM
$k'$3.5mM
$L$0.3mM
$\varepsilon$0.001s$^{-1}$
ParameterValueUnit
$T$0.01mM.s$^{-1}$
$k$3.5mM
$k'$3.5mM
$L$0.3mM
$\varepsilon$0.001s$^{-1}$
Table 3.  Parameters values
ParameterValueUnit
$T$0.01mM.s$^{-1}$
$k$3.5mM
$k'$3.5mM
$L$0.3mM
$J$0.0057mM.s$^{-1}$
$F$0.0272s$^{-1}$
$\varepsilon$0.1s$^{-1}$
ParameterValueUnit
$T$0.01mM.s$^{-1}$
$k$3.5mM
$k'$3.5mM
$L$0.3mM
$J$0.0057mM.s$^{-1}$
$F$0.0272s$^{-1}$
$\varepsilon$0.1s$^{-1}$
Table 4.  Parameters values
ParameterValueUnit
$T$0.1mM.d$^{-1}$
$k$3.5mM
$k'$3.5mM
$L$0.3mM
$F$0.0272d$^{-1}$
$\varepsilon$0.1d$^{-1}$
ParameterValueUnit
$T$0.1mM.d$^{-1}$
$k$3.5mM
$k'$3.5mM
$L$0.3mM
$F$0.0272d$^{-1}$
$\varepsilon$0.1d$^{-1}$
Table 5.  Fitted values of $\bar{u}_0$, $\bar{v}_0$ and $J$
Patient $\bar{u}_0$ (mM) $\bar{v}_0$ (mM) $J$ (mM.d$^{-1}$)
$1$ $0.025$ $0.329$ $0.026$
$2$ $0.017$ $0.320$ $0.010$
$3$ $0.034$ $0.338$ $0.001$
$4$ $0.146$ $0.460$ $0.036$
$5$ $1.817$ $2.291$ $0.007$
Patient $\bar{u}_0$ (mM) $\bar{v}_0$ (mM) $J$ (mM.d$^{-1}$)
$1$ $0.025$ $0.329$ $0.026$
$2$ $0.017$ $0.320$ $0.010$
$3$ $0.034$ $0.338$ $0.001$
$4$ $0.146$ $0.460$ $0.036$
$5$ $1.817$ $2.291$ $0.007$
[1]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

[2]

Jaime Angulo, Carlos Matheus, Didier Pilod. Global well-posedness and non-linear stability of periodic traveling waves for a Schrödinger-Benjamin-Ono system. Communications on Pure & Applied Analysis, 2009, 8 (3) : 815-844. doi: 10.3934/cpaa.2009.8.815

[3]

Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure & Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219

[4]

Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259

[5]

Sirui Li, Wei Wang, Pingwen Zhang. Local well-posedness and small Deborah limit of a molecule-based $Q$-tensor system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2611-2655. doi: 10.3934/dcdsb.2015.20.2611

[6]

Hartmut Pecher. Low regularity well-posedness for the 3D Klein - Gordon - Schrödinger system. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1081-1096. doi: 10.3934/cpaa.2012.11.1081

[7]

Ahmed Bchatnia, Aissa Guesmia. Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain. Mathematical Control & Related Fields, 2014, 4 (4) : 451-463. doi: 10.3934/mcrf.2014.4.451

[8]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

[9]

Gustavo Ponce, Jean-Claude Saut. Well-posedness for the Benney-Roskes/Zakharov- Rubenchik system. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 811-825. doi: 10.3934/dcds.2005.13.811

[10]

Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126

[11]

Alexandre Caboussat, Allison Leonard. Numerical solution and fast-slow decomposition of a population of weakly coupled systems. Conference Publications, 2009, 2009 (Special) : 123-132. doi: 10.3934/proc.2009.2009.123

[12]

Alexandre Vidal. Periodic orbits of tritrophic slow-fast system and double homoclinic bifurcations. Conference Publications, 2007, 2007 (Special) : 1021-1030. doi: 10.3934/proc.2007.2007.1021

[13]

Qiao Liu, Ting Zhang, Jihong Zhao. Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 371-402. doi: 10.3934/dcds.2016.36.371

[14]

Jiawei Chen, Zhongping Wan, Liuyang Yuan. Existence of solutions and $\alpha$-well-posedness for a system of constrained set-valued variational inequalities. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 567-581. doi: 10.3934/naco.2013.3.567

[15]

Michele Colturato. Well-posedness and longtime behavior for a singular phase field system with perturbed phase dynamics. Evolution Equations & Control Theory, 2018, 7 (2) : 217-245. doi: 10.3934/eect.2018011

[16]

Jianjun Yuan. On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2389-2403. doi: 10.3934/dcds.2014.34.2389

[17]

Shinya Kinoshita. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in 2D. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1479-1504. doi: 10.3934/dcds.2018061

[18]

Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025

[19]

Isao Kato. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2247-2280. doi: 10.3934/cpaa.2016036

[20]

Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D Navier-Stokes-Maxwell system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5817-5835. doi: 10.3934/dcds.2016056

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (76)
  • HTML views (303)
  • Cited by (0)

[Back to Top]