# American Institute of Mathematical Sciences

• Previous Article
Stochastic dynamics and survival analysis of a cell population model with random perturbations
• MBE Home
• This Issue
• Next Article
Modelling chemistry and biology after implantation of a drug-eluting stent. Part Ⅱ: Cell proliferation
October  2018, 15(5): 1099-1116. doi: 10.3934/mbe.2018049

## An age-structured vector-borne disease model with horizontal transmission in the host

 1 College of Mathematics and Information Science, Xinyang Normal University, Xinyang 464000, Henan, China 2 Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada

1Correspondence email: xywangxia@163.com(X. Wang)

Received  April 04, 2017 Accepted  March 22, 2018 Published  May 2018

We concern with a vector-borne disease model with horizontal transmission and infection age in the host population. With the approach of Lyapunov functionals, we establish a threshold dynamics, which is completely determined by the basic reproduction number. Roughly speaking, if the basic reproduction number is less than one then the infection-free equilibrium is globally asymptotically stable while if the basic reproduction number is larger than one then the infected equilibrium attracts all solutions with initial infection. These theoretical results are illustrated with numerical simulations.

Citation: Xia Wang, Yuming Chen. An age-structured vector-borne disease model with horizontal transmission in the host. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1099-1116. doi: 10.3934/mbe.2018049
##### References:

show all references

##### References:
When $R_0<1$, the infection-free equilibrium $E^0$ of (2) is globally asymptotically stable. Here since $E_h(t)$ converges to $0$ very fast, we use the time interval $[0, 100]$ different from the interval $[0, 1000]$ for other components
When $R_0>1$, the infected equilibrium $E^{\ast}$ of (2) is globally asymptotically stable
Biological meanings of parameters in (1)
 Parameter Meaning $\lambda_h$ Per capita host birth rate $\mu_h$ Host death rate $\beta_1$ Rate of horizontal transmission of the disease $\beta_2$ Rate of a pathogen carrying mosquito biting susceptible host $\alpha_h$ Inverse of host latent period $\delta_h$ Disease related death rate of host $\gamma_h$ Recovery rate of host $\lambda_v$ Per capita vector birth rate $k$ Biting rate of per susceptible vector per host per unit time $\mu_v$ Vector death rate $\alpha_v$ Inverse of vector latent period $\delta_v$ Disease related death rate of vectors
 Parameter Meaning $\lambda_h$ Per capita host birth rate $\mu_h$ Host death rate $\beta_1$ Rate of horizontal transmission of the disease $\beta_2$ Rate of a pathogen carrying mosquito biting susceptible host $\alpha_h$ Inverse of host latent period $\delta_h$ Disease related death rate of host $\gamma_h$ Recovery rate of host $\lambda_v$ Per capita vector birth rate $k$ Biting rate of per susceptible vector per host per unit time $\mu_v$ Vector death rate $\alpha_v$ Inverse of vector latent period $\delta_v$ Disease related death rate of vectors
 [1] Shangbing Ai. Global stability of equilibria in a tick-borne disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 567-572. doi: 10.3934/mbe.2007.4.567 [2] Yuming Chen, Junyuan Yang, Fengqin Zhang. The global stability of an SIRS model with infection age. Mathematical Biosciences & Engineering, 2014, 11 (3) : 449-469. doi: 10.3934/mbe.2014.11.449 [3] Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva. Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1159-1186. doi: 10.3934/mbe.2017060 [4] C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008 [5] Xinli Hu, Yansheng Liu, Jianhong Wu. Culling structured hosts to eradicate vector-borne diseases. Mathematical Biosciences & Engineering, 2009, 6 (2) : 301-319. doi: 10.3934/mbe.2009.6.301 [6] Kbenesh Blayneh, Yanzhao Cao, Hee-Dae Kwon. Optimal control of vector-borne diseases: Treatment and prevention. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 587-611. doi: 10.3934/dcdsb.2009.11.587 [7] Derdei Mahamat Bichara. Effects of migration on vector-borne diseases with forward and backward stage progression. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-27. doi: 10.3934/dcdsb.2019140 [8] Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859 [9] Andrey V. Melnik, Andrei Korobeinikov. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility. Mathematical Biosciences & Engineering, 2013, 10 (2) : 369-378. doi: 10.3934/mbe.2013.10.369 [10] Jing-Jing Xiang, Juan Wang, Li-Ming Cai. Global stability of the dengue disease transmission models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2217-2232. doi: 10.3934/dcdsb.2015.20.2217 [11] Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565 [12] Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li. Global stability of an age-structured cholera model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 641-665. doi: 10.3934/mbe.2014.11.641 [13] Cruz Vargas-De-León, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1019-1033. doi: 10.3934/mbe.2017053 [14] Yicang Zhou, Zhien Ma. Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences & Engineering, 2009, 6 (2) : 409-425. doi: 10.3934/mbe.2009.6.409 [15] Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643 [16] Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689 [17] Jinliang Wang, Jiying Lang, Yuming Chen. Global dynamics of an age-structured HIV infection model incorporating latency and cell-to-cell transmission. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3721-3747. doi: 10.3934/dcdsb.2017186 [18] Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations & Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241 [19] Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971 [20] Jinliang Wang, Jiying Lang, Xianning Liu. Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3215-3233. doi: 10.3934/dcdsb.2015.20.3215

2018 Impact Factor: 1.313