August 2018, 15(4): 993-1010. doi: 10.3934/mbe.2018044

Optimal design for dynamical modeling of pest populations

1. 

Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC 27695-8212, USA

2. 

Undergraduate Research Opportunities Center (UROC), California State University, Monterey Bay, Seaside, CA 93955, USA

3. 

Department of Entomology and Nematology, Center for Population Biology, University of California, Davis, CA 95616, USA

Received  July 31, 2017 Accepted  November 30, 2017 Published  March 2018

We apply SE-optimal design methodology to investigate optimal data collection procedures as a first step in investigating information content in ecoinformatics data sets. To illustrate ideas we use a simple phenomenological citrus red mite population model for pest dynamics. First the optimal sampling distributions for a varying number of data points are determined. We then analyze these optimal distributions by comparing the standard errors of parameter estimates corresponding to each distribution. This allows us to investigate how many data are required to have confidence in model parameter estimates in order to employ dynamical modeling to infer population dynamics. Our results suggest that a field researcher should collect at least 12 data points at the optimal times. Data collected according to this procedure along with dynamical modeling will allow us to estimate population dynamics from presence/absence-based data sets through the development of a scaling relationship. These Likert-type data sets are commonly collected by agricultural pest management consultants and are increasingly being used in ecoinformatics studies. By applying mathematical modeling with the relationship scale from the new data, we can then explore important integrated pest management questions using past and future presence/absence data sets.

Citation: H. T. Banks, R. A. Everett, Neha Murad, R. D. White, J. E. Banks, Bodil N. Cass, Jay A. Rosenheim. Optimal design for dynamical modeling of pest populations. Mathematical Biosciences & Engineering, 2018, 15 (4) : 993-1010. doi: 10.3934/mbe.2018044
References:
[1]

H. T. BanksJ. E. BanksR. A. Everett and J. D. Stark, An adaptive feedback methodology for determining information content in stable population studies, Mathematical Biosciences and Engineering, 13 (2016), 653-671. doi: 10.3934/mbe.2016013.

[2]

H. T. BanksJ. E. BanksJ. Rosenheim and K. Tillman, Modelling populations of Lygus hesperus cotton fields in the San Joaquin Valley of California: The importance of statistical and mathematical model choice, Journal of Biological Dynamics, 11 (2017), 25-39. doi: 10.1080/17513758.2016.1143533.

[3]

H. T. Banks, J. E. Banks, N. Murad, J. A Rosenheim and K. Tillman, Modelling pesticide treatment effects on Lygus hesperus in cotton fields, CRSC-TR15-09, Center for Research in Scientific Computation, N. C. State University, Raleigh, NC, September, 2015; Proceedings, 27 th IFIP TC7 Conference 2015 on System Modelling and Optimization, L. Bociu et al (Eds.) CSMO 2015 IFIP AICT, 494 (2017), 1-12, Springer.

[4]

H. T. BanksK. Bekele-MaxwellL. BociuM. Noorman and K. Tillman, The complex-step method for sensitivity analysis of non-smooth problems arising in biology, Eurasian Journal of Mathematical and Computer Applications, 3 (2015), 15-68.

[5]

H. T. Banks, A. Cintron-Arias and F. Kappel, Parameter selection methods in inverse problem formulation, CRSC-TR10-03, N. C. State University, February, 2010, Revised, November, 2010; in Mathematical Modeling and Validation in Physiology: Application to the Cardiovascular and Respiratory Systems, (J. J. Batzel, M. Bachar, and F. Kappel, eds.), 43-73, Lecture Notes in Mathematics, 2064, Springer-Verlag, Berlin 2013.

[6]

H. T. BanksS. DediuS. L. Ernstberger and F. Kappel, Generalized sensitivities and optimal experimental design, Journal of Inverse and Ill-posed Problems, 18 (2010), 25-83.

[7]

H. T. Banks and M. L. Joyner, Information Content in Data Sets: A Review of Methods for Interrogation and Model Comparison, CRSC-TR17-14, N. C. State University, Raleigh, NC, June, 2017. doi: 10.1515/jiip-2017-0096.

[8]

H. T. Banks, K. Holm and F. Kappel, Comparison of optimal design methods in inverse problems, Inverse Problems, 27 (2011), 075002, 31 pp.

[9] H. T. BanksS. Hu and W. C. Thompson, Modeling and Inverse Problems in the Presence of Uncertainty, CRC Press, New York, 2014.
[10] H. T. Banks and H. T. Tran, Mathematical and Experimental Modeling of Physical and Biological Processes, CRC Press, New York, 2009.
[11]

C. C. Childers and T. R. Fasulo, Citrus red mite, Gainesville: University of Florida Institute of Food and Agricultural Sciences, ENY817,1992. http://ufdc.ufl.edu/IR00004619/00001

[12]

S. H. Dreistadt, Review of Integrated Pest Management for Citrus, 3rd ed, Journal of Agricultural & Food Information, University of California Division of Agriculture and Natural Resources, Publication 3303,2012.

[13]

L. Ferguson and E. E. Grafton-Cardwell, Citrus Production Manual, University of California Agriculture and Natural Resources, Publication 3539,2014.

[14]

V. P. Jones and M. P. Parrella, Intratree regression sampling plans for the citrus red mite (Acari: Tetranychidae) on lemons in southern California, Journal of Economic Entomology, 77 (1984), 810-813. doi: 10.1093/jee/77.3.810.

[15]

M. Kogan, Integrated pest management: historical perspectives and contemporary developments, Annual Review of Entomology, 43 (1998), 243-270. doi: 10.1146/annurev.ento.43.1.243.

[16]

R. Likert, A technique for the measurement of attitudes, Archives of Psychology, 22 (1932), p55.

[17]

G. Livingston, L. Hack, K. Steinmann, E. E. Grafton-Cardwell and J. A. Rosenheim, An ecoinformatics approach to field scale evaluation of pesticide efficacy and hazards in California citrus, in prep.

[18]

J. A. Rosenheim and C. Gratton, Ecoinformatics (big data) for agricultural entomology: Pitfalls, progress, and promise, Annual Review of Entomology, 62 (2017), 399-417. doi: 10.1146/annurev-ento-031616-035444.

[19]

J. A. RosenheimS. ParsaA. A. ForbesW. A. KrimmelY. H. LawM. SegoliM. SegoliF. S. SivakoffT. Zaviezo and K. Gross, Ecoinformatics for integrated pest management: Expanding the applied insect ecologist's tool-kit, Journal of Economic Entomology, 104 (2011), 331-342. doi: 10.1603/EC10380.

show all references

References:
[1]

H. T. BanksJ. E. BanksR. A. Everett and J. D. Stark, An adaptive feedback methodology for determining information content in stable population studies, Mathematical Biosciences and Engineering, 13 (2016), 653-671. doi: 10.3934/mbe.2016013.

[2]

H. T. BanksJ. E. BanksJ. Rosenheim and K. Tillman, Modelling populations of Lygus hesperus cotton fields in the San Joaquin Valley of California: The importance of statistical and mathematical model choice, Journal of Biological Dynamics, 11 (2017), 25-39. doi: 10.1080/17513758.2016.1143533.

[3]

H. T. Banks, J. E. Banks, N. Murad, J. A Rosenheim and K. Tillman, Modelling pesticide treatment effects on Lygus hesperus in cotton fields, CRSC-TR15-09, Center for Research in Scientific Computation, N. C. State University, Raleigh, NC, September, 2015; Proceedings, 27 th IFIP TC7 Conference 2015 on System Modelling and Optimization, L. Bociu et al (Eds.) CSMO 2015 IFIP AICT, 494 (2017), 1-12, Springer.

[4]

H. T. BanksK. Bekele-MaxwellL. BociuM. Noorman and K. Tillman, The complex-step method for sensitivity analysis of non-smooth problems arising in biology, Eurasian Journal of Mathematical and Computer Applications, 3 (2015), 15-68.

[5]

H. T. Banks, A. Cintron-Arias and F. Kappel, Parameter selection methods in inverse problem formulation, CRSC-TR10-03, N. C. State University, February, 2010, Revised, November, 2010; in Mathematical Modeling and Validation in Physiology: Application to the Cardiovascular and Respiratory Systems, (J. J. Batzel, M. Bachar, and F. Kappel, eds.), 43-73, Lecture Notes in Mathematics, 2064, Springer-Verlag, Berlin 2013.

[6]

H. T. BanksS. DediuS. L. Ernstberger and F. Kappel, Generalized sensitivities and optimal experimental design, Journal of Inverse and Ill-posed Problems, 18 (2010), 25-83.

[7]

H. T. Banks and M. L. Joyner, Information Content in Data Sets: A Review of Methods for Interrogation and Model Comparison, CRSC-TR17-14, N. C. State University, Raleigh, NC, June, 2017. doi: 10.1515/jiip-2017-0096.

[8]

H. T. Banks, K. Holm and F. Kappel, Comparison of optimal design methods in inverse problems, Inverse Problems, 27 (2011), 075002, 31 pp.

[9] H. T. BanksS. Hu and W. C. Thompson, Modeling and Inverse Problems in the Presence of Uncertainty, CRC Press, New York, 2014.
[10] H. T. Banks and H. T. Tran, Mathematical and Experimental Modeling of Physical and Biological Processes, CRC Press, New York, 2009.
[11]

C. C. Childers and T. R. Fasulo, Citrus red mite, Gainesville: University of Florida Institute of Food and Agricultural Sciences, ENY817,1992. http://ufdc.ufl.edu/IR00004619/00001

[12]

S. H. Dreistadt, Review of Integrated Pest Management for Citrus, 3rd ed, Journal of Agricultural & Food Information, University of California Division of Agriculture and Natural Resources, Publication 3303,2012.

[13]

L. Ferguson and E. E. Grafton-Cardwell, Citrus Production Manual, University of California Agriculture and Natural Resources, Publication 3539,2014.

[14]

V. P. Jones and M. P. Parrella, Intratree regression sampling plans for the citrus red mite (Acari: Tetranychidae) on lemons in southern California, Journal of Economic Entomology, 77 (1984), 810-813. doi: 10.1093/jee/77.3.810.

[15]

M. Kogan, Integrated pest management: historical perspectives and contemporary developments, Annual Review of Entomology, 43 (1998), 243-270. doi: 10.1146/annurev.ento.43.1.243.

[16]

R. Likert, A technique for the measurement of attitudes, Archives of Psychology, 22 (1932), p55.

[17]

G. Livingston, L. Hack, K. Steinmann, E. E. Grafton-Cardwell and J. A. Rosenheim, An ecoinformatics approach to field scale evaluation of pesticide efficacy and hazards in California citrus, in prep.

[18]

J. A. Rosenheim and C. Gratton, Ecoinformatics (big data) for agricultural entomology: Pitfalls, progress, and promise, Annual Review of Entomology, 62 (2017), 399-417. doi: 10.1146/annurev-ento-031616-035444.

[19]

J. A. RosenheimS. ParsaA. A. ForbesW. A. KrimmelY. H. LawM. SegoliM. SegoliF. S. SivakoffT. Zaviezo and K. Gross, Ecoinformatics for integrated pest management: Expanding the applied insect ecologist's tool-kit, Journal of Economic Entomology, 104 (2011), 331-342. doi: 10.1603/EC10380.

Figure 1.  Traditional sensitivities for model parameters
Figure 2.  Optimized meshes resulting from SE-optimal implementation
Figure 3.  Relationship between sampling distribution and corresponding performance (cost)
Figure 4.  Average standard errors (over 1000 MC trials) for each parameter, comparing optimized versus uniform grids for N = 6, 12, 18, 24, and 30
Figure 5.  Confidence intervals for each parameter for N = 6, 12, 18, 24, and 30 on the optimized grids
Figure 6.  Heaviside functions and Dirac delta "functions"
[1]

Luis F. Gordillo. Optimal sterile insect release for area-wide integrated pest management in a density regulated pest population. Mathematical Biosciences & Engineering, 2014, 11 (3) : 511-521. doi: 10.3934/mbe.2014.11.511

[2]

Santiago Campos-Barreiro, Jesús López-Fidalgo. KL-optimal experimental design for discriminating between two growth models applied to a beef farm. Mathematical Biosciences & Engineering, 2016, 13 (1) : 67-82. doi: 10.3934/mbe.2016.13.67

[3]

Bin Li, Kok Lay Teo, Cheng-Chew Lim, Guang Ren Duan. An optimal PID controller design for nonlinear constrained optimal control problems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1101-1117. doi: 10.3934/dcdsb.2011.16.1101

[4]

Sanyi Tang, Lansun Chen. Modelling and analysis of integrated pest management strategy. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 759-768. doi: 10.3934/dcdsb.2004.4.759

[5]

Guirong Jiang, Qishao Lu, Linping Peng. Impulsive Ecological Control Of A Stage-Structured Pest Management System. Mathematical Biosciences & Engineering, 2005, 2 (2) : 329-344. doi: 10.3934/mbe.2005.2.329

[6]

Benedetto Piccoli. Optimal syntheses for state constrained problems with application to optimization of cancer therapies. Mathematical Control & Related Fields, 2012, 2 (4) : 383-398. doi: 10.3934/mcrf.2012.2.383

[7]

Faustino Maestre, Pablo Pedregal. Dynamic materials for an optimal design problem under the two-dimensional wave equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 973-990. doi: 10.3934/dcds.2009.23.973

[8]

Hyeon Je Cho, Ganguk Hwang. Optimal design for dynamic spectrum access in cognitive radio networks under Rayleigh fading. Journal of Industrial & Management Optimization, 2012, 8 (4) : 821-840. doi: 10.3934/jimo.2012.8.821

[9]

Alexandre Bayen, Rinaldo M. Colombo, Paola Goatin, Benedetto Piccoli. Traffic modeling and management: Trends and perspectives. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : i-ii. doi: 10.3934/dcdss.2014.7.3i

[10]

Marco V. Martinez, Suzanne Lenhart, K. A. Jane White. Optimal control of integrodifference equations in a pest-pathogen system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1759-1783. doi: 10.3934/dcdsb.2015.20.1759

[11]

Ernesto Aranda, Pablo Pedregal. Constrained envelope for a general class of design problems. Conference Publications, 2003, 2003 (Special) : 30-41. doi: 10.3934/proc.2003.2003.30

[12]

Shuhua Zhang, Xinyu Wang, Hua Li. Modeling and computation of water management by real options. Journal of Industrial & Management Optimization, 2018, 14 (1) : 81-103. doi: 10.3934/jimo.2017038

[13]

Xiaodi Bai, Xiaojin Zheng, Xiaoling Sun. A survey on probabilistically constrained optimization problems. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 767-778. doi: 10.3934/naco.2012.2.767

[14]

Donglei Du, Tianping Shuai. Errata to:''Optimal preemptive online scheduling to minimize $l_{p}$ norm on two processors''[Journal of Industrial and Management Optimization, 1(3) (2005), 345-351.]. Journal of Industrial & Management Optimization, 2008, 4 (2) : 339-341. doi: 10.3934/jimo.2008.4.339

[15]

Shaojun Lan, Yinghui Tang, Miaomiao Yu. System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1435-1464. doi: 10.3934/jimo.2016.12.1435

[16]

Andrew J. Whittle, Suzanne Lenhart, Louis J. Gross. Optimal control for management of an invasive plant species. Mathematical Biosciences & Engineering, 2007, 4 (1) : 101-112. doi: 10.3934/mbe.2007.4.101

[17]

Shi'an Wang, N. U. Ahmed. Optimum management of the network of city bus routes based on a stochastic dynamic model. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-13. doi: 10.3934/jimo.2018061

[18]

Zhongwen Chen, Songqiang Qiu, Yujie Jiao. A penalty-free method for equality constrained optimization. Journal of Industrial & Management Optimization, 2013, 9 (2) : 391-409. doi: 10.3934/jimo.2013.9.391

[19]

K.F.C. Yiu, K.L. Mak, K. L. Teo. Airfoil design via optimal control theory. Journal of Industrial & Management Optimization, 2005, 1 (1) : 133-148. doi: 10.3934/jimo.2005.1.133

[20]

Boris P. Belinskiy. Optimal design of an optical length of a rod with the given mass. Conference Publications, 2007, 2007 (Special) : 85-91. doi: 10.3934/proc.2007.2007.85

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (80)
  • HTML views (288)
  • Cited by (0)

[Back to Top]