• Previous Article
    The role of structural viscoelasticity in deformable porous media with incompressible constituents: Applications in biomechanics
  • MBE Home
  • This Issue
  • Next Article
    Optimal design for dynamical modeling of pest populations
August 2018, 15(4): 961-991. doi: 10.3934/mbe.2018043

Quantifying the survival uncertainty of Wolbachia-infected mosquitoes in a spatial model

1. 

AgroParisTech, 16 rue Claude Bernard, 75231 Paris Cedex 05, France

2. 

Sorbonne Université, Université Paris-Diderot SPC, CNRS, INRIA, Laboratoire Jacques-Louis Lions, équipe Mamba, F-75005 Paris, France

3. 

LAGA - UMR 7539 Institut Galilée, Université Paris 13, 99, avenue Jean-Baptiste Clément 93430 Villetaneuse, France

4. 

IMPA, Estrada Dona Castorina, 110 Jardim Botânico 22460-320, Rio de Janeiro, RJ, Brazil

* Corresponding author: M. Strugarek.

Received  July 24, 2017 Accepted  January 03, 2018 Published  March 2018

Artificial releases of Wolbachia-infected Aedes mosquitoes have been under study in the past yearsfor fighting vector-borne diseases such as dengue, chikungunya and zika.Several strains of this bacterium cause cytoplasmic incompatibility (CI) and can also affect their host's fecundity or lifespan, while highly reducing vector competence for the main arboviruses.

We consider and answer the following questions: 1) what should be the initial condition (i.e. size of the initial mosquito population) to have invasion with one mosquito release source? We note that it is hard to have an invasion in such case. 2) How many release points does one need to have sufficiently high probability of invasion? 3) What happens if one accounts for uncertainty in the release protocol (e.g. unequal spacing among release points)?

We build a framework based on existing reaction-diffusion models for the uncertainty quantification in this context,obtain both theoretical and numerical lower bounds for the probability of release successand give new quantitative results on the one dimensional case.

Citation: Martin Strugarek, Nicolas Vauchelet, Jorge P. Zubelli. Quantifying the survival uncertainty of Wolbachia-infected mosquitoes in a spatial model. Mathematical Biosciences & Engineering, 2018, 15 (4) : 961-991. doi: 10.3934/mbe.2018043
References:
[1]

http://www.cdc.gov/zika/transmission/index.html, 2016.

[2]

L. Alphey, Genetic control of mosquitoes, Annual Review of Entomology, 59 (2014), 205-224. doi: 10.1146/annurev-ento-011613-162002.

[3]

L. AlpheyA. McKemeyD. NimmoO. M. NeiraR. LacroixK. Matzen and C. Beech, Genetic control of Aedes mosquitoes, Pathogens and Global Health, 107 (2013), 170-179. doi: 10.1179/2047773213Y.0000000095.

[4]

N. H. Barton and M. Turelli, Spatial waves of advance with bistable dynamics: Cytoplasmic and genetic analogues of Allee effects, The American Naturalist, 178 (2011), E48-E75. doi: 10.1086/661246.

[5]

N. Barton and G. Hewitt, Adaptation, speciation and hybrid zones, Nature, 341 (1989), 497-503. doi: 10.1038/341497a0.

[6]

N. Barton and S. Rouhani, The probability of fixation of a new karyotype in a continuous population, Evolution, 45 (1991), 499-517. doi: 10.1111/j.1558-5646.1991.tb04326.x.

[7]

S. BhattP. W. GethingO. J. BradyJ. P. MessinaA. W. FarlowC. L. MoyesJ. M. DrakeJ. S. BrownsteinA. G. HoenO. SankohM. F. MyersD. B. GeorgeT. JaenischG. R. W. WintC. P. SimmonsT. W. ScottJ. J. Farrar and S. I. Hay, The global distribution and burden of dengue, Nature, 496 (2013), 504-507. doi: 10.1038/nature12060.

[8]

M. S. C. Blagrove, C. Arias-Goeta, C. Di Genua, A.-B. Failloux and S. P. Sinkins, A Wolbachia wMel transinfection in Aedes albopictus is not detrimental to host fitness and inhibits Chikungunya virus, PLoS Neglected Tropical Diseases, 7 (2013), e2152. doi: 10.1371/journal.pntd.0002152.

[9]

M. H. T. Chan and P. S. Kim, Modeling a Wolbachia invasion using a slow-fast dispersal reaction-diffusion approach, Bulletin of Mathematical Biology, 75 (2013), 1501-1523. doi: 10.1007/s11538-013-9857-y.

[10]

P. R. Crain, J. W. Mains, E. Suh, Y. Huang, P. H. Crowley and S. L. Dobson, Wolbachia infections that reduce immature insect survival: Predicted impacts on population replacement, BMC Evolutionary Biology, 11 (2011), p290. doi: 10.1186/1471-2148-11-290.

[11]

Y. Du and H. Matano, Convergence and sharp thresholds for propagation in nonlinear diffusion problems, Journal of the European Mathematical Society, 12 (2010), 279-312. doi: 10.4171/JEMS/198.

[12]

G. L. C. Dutra, L. M. B. dos Santos, E. P. Caragata, J. B. L. Silva, D. A. M. Villela, R. Maciel-de Freitas and L. A. Moreira, From Lab to Field: The influence of urban landscapes on the invasive potential of Wolbachia in Brazilian Aedes aegypti mosquitoes, PLoS Neglected Tropical Diseases, 9 (2015), e0003689. doi: 10.1371/journal.pntd.0003689.

[13]

P. Erdos and A. Rényi, On a classical problem of probability theory, Magyar. Tud. Akad. Mat. Kutato Int. Kozl., 6 (1961), 215-220.

[14]

A. FentonK. N. JohnsonJ. C. Brownlie and G. D. D. Hurst, Solving the Wolbachia paradox: Modeling the tripartite interaction between host, Wolbachia, and a natural enemy, The American Naturalist, 178 (2011), 333-342. doi: 10.1086/661247.

[15]

P. A. Hancock and H. C. J. Godfray, Modelling the spread of Wolbachia in spatially heterogeneous environments, Journal of The Royal Society Interface, 9 (2012), p253. doi: 10.1098/rsif.2012.0253.

[16]

P. A. HancockS. P. Sinkins and H. C. J. Godfray, Population dynamic models of the spread of Wolbachia, The American Naturalist, 177 (2011), 323-333. doi: 10.1086/658121.

[17]

P. A. Hancock, S. P. Sinkins and H. C. J. Godfray, Strategies for introducing Wolbachia to reduce transmission of mosquito-borne diseases, PLoS Neglected Tropical Diseases, 5 (2011), e1024. doi: 10.1371/journal.pntd.0001024.

[18]

A. A. Hoffmann, I. Iturbe-Ormaetxe, A. G. Callahan, B. L. Phillips, K. Billington, J. K. Axford, B. Montgomery, A. P. Turley and S. L. O'Neill, Stability of the wMel Wolbachia infection following invasion into Aedes aegypti populations, PLoS Neglected Tropical Diseases, 8 (2014), e3115. doi: 10.1371/journal.pntd.0003115.

[19]

A. A. HoffmannB. L. MontgomeryJ. PopoviciI. Iturbe-OrmaetxeP. H. JohnsonF. MuzziM. GreenfieldM. DurkanY. S. LeongY. DongH. CookJ. AxfordA. G. CallahanN. KennyC. OmodeiE. A. McGrawP. A. RyanS. A. RitchieM. Turelli and S. L. O'Neill, Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature, 476 (2011), 454-457. doi: 10.1038/nature10356.

[20]

H. Hughes and N. F. Britton, Modeling the use of Wolbachia to control dengue fever transmission, Bulletin of Mathematical Biology, 75 (2013), 796-818. doi: 10.1007/s11538-013-9835-4.

[21]

V. A. JansenM. Turelli and H. C. J. Godfray, Stochastic spread of Wolbachia, Proceedings of the Royal Society of London B: Biological Sciences, 275 (2008), 2769-2776. doi: 10.1098/rspb.2008.0914.

[22]

K. N. Johnson, The impact of Wolbachia on virus infection in mosquitoes, Viruses, 7 (2015), 5705-5717. doi: 10.3390/v7112903.

[23]

R. Maciel-de FreitasR. Souza-SantosC. T. Codeço and R. Lourenço-de Oliveira, Influence of the spatial distribution of human hosts and large size containers on the dispersal of the mosquito Aedes aegypti within the first gonotrophic cycle, Medical and Veterinary Entomology, 24 (2010), 74-82. doi: 10.1111/j.1365-2915.2009.00851.x.

[24]

H. Matano and P. Poláčik, Dynamics of nonnegative solutions of one-dimensional reaction-diffusion equations with localized initial data. Part i: A general quasiconvergence theorem and its consequences, Communications in Partial Differential Equations, 41 (2016), 785-811. doi: 10.1080/03605302.2016.1156697.

[25]

C. B. Muratov and X. Zhong, Threshold phenomena for symmetric-decreasing radial solutions of reaction-diffusion equations, Discrete and Continuous Dynamical Systems, 37 (2017), 915-944. doi: 10.3934/dcds.2017038.

[26]

T. H. Nguyen, H. L. Nguyen, T. Y. Nguyen, S. N. Vu, N. D. Tran, T. N. Le, Q. M. Vien, T. C. Bui, H. T. Le, S. Kutcher, T. P. Hurst, T. T. H. Duong, J. A. L. Jeffery, J. M. Darbro, B. H. Kay, I. Iturbe-Ormaetxe, J. Popovici, B. L. Montgomery, A. P. Turley, F. Zigterman, H. Cook, P. E. Cook, P. H. Johnson, P. A. Ryan, C. J. Paton, S. A. Ritchie, C. P. Simmons, S. L. O'Neill and A. A. Hoffmann, Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control, Parasites & Vectors, 8 (2015), p563. doi: 10.1186/s13071-015-1174-x.

[27]

M. OteroN. Schweigmann and H. G. Solari, A stochastic spatial dynamical model for Aedes aegypti, Bulletin of Mathematical Biology, 70 (2008), 1297-1325. doi: 10.1007/s11538-008-9300-y.

[28]

T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problems, Journal of Differential Equations, 146 (1998), 121-156. doi: 10.1006/jdeq.1998.3414.

[29]

T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problem, Ⅱ, Journal of Differential Equations, 158 (1999), 94-151. doi: 10.1016/S0022-0396(99)80020-5.

[30]

P. Poláčik, Threshold solutions and sharp transitions for nonautonomous parabolic equations on $\mathbb{R}^N$, Archive for Rational Mechanics and Analysis, 199 (2011), 69-97. doi: 10.1007/s00205-010-0316-8.

[31]

S. Rouhani and N. Barton, Speciation and the ''Shifting Balance" in a continuous population, Theoretical Population Biology, 31 (1987), 465-492. doi: 10.1016/0040-5809(87)90016-5.

[32]

M. Strugarek and N. Vauchelet, Reduction to a single closed equation for 2 by 2 reaction-diffusion systems of Lotka-Volterra type, SIAM Journal on Applied Mathematics, 76 (2016), 2060-2080. doi: 10.1137/16M1059217.

[33]

M. Turelli, Cytoplasmic incompatibility in populations with overlapping generations, Evolution, 64 (2010), 232-241. doi: 10.1111/j.1558-5646.2009.00822.x.

[34]

F. Vavre and S. Charlat, Making (good) use of Wolbachia: What the models say, Current Opinion in Microbiology, 15 (2012), 263-268. doi: 10.1016/j.mib.2012.03.005.

[35]

D. A. M. Villela, C. T. Codeço, F. Figueiredo, G. A. Garcia, R. Maciel-de Freitas and C. J. Struchiner, A Bayesian hierarchical model for estimation of abundance and spatial density of Aedes aegypti, PLoS ONE, 10 (2015), e0123794. doi: 10.1371/journal.pone.0123794.

[36]

T. WalkerP. H. JohnsonL. A. MoreiraI. Iturbe-OrmaetxeF. D. FrentiuC. J. McMenimanY. S. LeongY. DongJ. AxfordP. KriesnerA. L. LloydS. A. RitchieS. L. O'Neill and A. A. Hoffmann, The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, 476 (2011), 450-453. doi: 10.1038/nature10355.

[37]

H. L. YeapP. MeeT. WalkerA. R. WeeksS. L. O'NeillP. JohnsonS. A. RitchieK. M. RichardsonC. DoigN. M. Endersby and A. A. Hoffmann, Dynamics of the "Popcorn" Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control, Genetics, 187 (2011), 583-595. doi: 10.1534/genetics.110.122390.

[38]

H. L. YeapG. RasicN. M. Endersby-HarshmanS. F. LeeE. ArguniH. Le Nguyen and A. A. Hoffmann, Mitochondrial DNA variants help monitor the dynamics of Wolbachia invasion into host populations, Heredity, 116 (2016), 265-276. doi: 10.1038/hdy.2015.97.

[39]

B. ZhengM. TangJ. Yu and J. Qiu, Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, Journal of Mathematical Biology, 76 (2018), 235-263. doi: 10.1007/s00285-017-1142-5.

[40]

A. Zlatos, Sharp transition between extinction and propagation of reaction, Journal of the American Mathematical Society, 19 (2006), 251-263. doi: 10.1090/S0894-0347-05-00504-7.

show all references

References:
[1]

http://www.cdc.gov/zika/transmission/index.html, 2016.

[2]

L. Alphey, Genetic control of mosquitoes, Annual Review of Entomology, 59 (2014), 205-224. doi: 10.1146/annurev-ento-011613-162002.

[3]

L. AlpheyA. McKemeyD. NimmoO. M. NeiraR. LacroixK. Matzen and C. Beech, Genetic control of Aedes mosquitoes, Pathogens and Global Health, 107 (2013), 170-179. doi: 10.1179/2047773213Y.0000000095.

[4]

N. H. Barton and M. Turelli, Spatial waves of advance with bistable dynamics: Cytoplasmic and genetic analogues of Allee effects, The American Naturalist, 178 (2011), E48-E75. doi: 10.1086/661246.

[5]

N. Barton and G. Hewitt, Adaptation, speciation and hybrid zones, Nature, 341 (1989), 497-503. doi: 10.1038/341497a0.

[6]

N. Barton and S. Rouhani, The probability of fixation of a new karyotype in a continuous population, Evolution, 45 (1991), 499-517. doi: 10.1111/j.1558-5646.1991.tb04326.x.

[7]

S. BhattP. W. GethingO. J. BradyJ. P. MessinaA. W. FarlowC. L. MoyesJ. M. DrakeJ. S. BrownsteinA. G. HoenO. SankohM. F. MyersD. B. GeorgeT. JaenischG. R. W. WintC. P. SimmonsT. W. ScottJ. J. Farrar and S. I. Hay, The global distribution and burden of dengue, Nature, 496 (2013), 504-507. doi: 10.1038/nature12060.

[8]

M. S. C. Blagrove, C. Arias-Goeta, C. Di Genua, A.-B. Failloux and S. P. Sinkins, A Wolbachia wMel transinfection in Aedes albopictus is not detrimental to host fitness and inhibits Chikungunya virus, PLoS Neglected Tropical Diseases, 7 (2013), e2152. doi: 10.1371/journal.pntd.0002152.

[9]

M. H. T. Chan and P. S. Kim, Modeling a Wolbachia invasion using a slow-fast dispersal reaction-diffusion approach, Bulletin of Mathematical Biology, 75 (2013), 1501-1523. doi: 10.1007/s11538-013-9857-y.

[10]

P. R. Crain, J. W. Mains, E. Suh, Y. Huang, P. H. Crowley and S. L. Dobson, Wolbachia infections that reduce immature insect survival: Predicted impacts on population replacement, BMC Evolutionary Biology, 11 (2011), p290. doi: 10.1186/1471-2148-11-290.

[11]

Y. Du and H. Matano, Convergence and sharp thresholds for propagation in nonlinear diffusion problems, Journal of the European Mathematical Society, 12 (2010), 279-312. doi: 10.4171/JEMS/198.

[12]

G. L. C. Dutra, L. M. B. dos Santos, E. P. Caragata, J. B. L. Silva, D. A. M. Villela, R. Maciel-de Freitas and L. A. Moreira, From Lab to Field: The influence of urban landscapes on the invasive potential of Wolbachia in Brazilian Aedes aegypti mosquitoes, PLoS Neglected Tropical Diseases, 9 (2015), e0003689. doi: 10.1371/journal.pntd.0003689.

[13]

P. Erdos and A. Rényi, On a classical problem of probability theory, Magyar. Tud. Akad. Mat. Kutato Int. Kozl., 6 (1961), 215-220.

[14]

A. FentonK. N. JohnsonJ. C. Brownlie and G. D. D. Hurst, Solving the Wolbachia paradox: Modeling the tripartite interaction between host, Wolbachia, and a natural enemy, The American Naturalist, 178 (2011), 333-342. doi: 10.1086/661247.

[15]

P. A. Hancock and H. C. J. Godfray, Modelling the spread of Wolbachia in spatially heterogeneous environments, Journal of The Royal Society Interface, 9 (2012), p253. doi: 10.1098/rsif.2012.0253.

[16]

P. A. HancockS. P. Sinkins and H. C. J. Godfray, Population dynamic models of the spread of Wolbachia, The American Naturalist, 177 (2011), 323-333. doi: 10.1086/658121.

[17]

P. A. Hancock, S. P. Sinkins and H. C. J. Godfray, Strategies for introducing Wolbachia to reduce transmission of mosquito-borne diseases, PLoS Neglected Tropical Diseases, 5 (2011), e1024. doi: 10.1371/journal.pntd.0001024.

[18]

A. A. Hoffmann, I. Iturbe-Ormaetxe, A. G. Callahan, B. L. Phillips, K. Billington, J. K. Axford, B. Montgomery, A. P. Turley and S. L. O'Neill, Stability of the wMel Wolbachia infection following invasion into Aedes aegypti populations, PLoS Neglected Tropical Diseases, 8 (2014), e3115. doi: 10.1371/journal.pntd.0003115.

[19]

A. A. HoffmannB. L. MontgomeryJ. PopoviciI. Iturbe-OrmaetxeP. H. JohnsonF. MuzziM. GreenfieldM. DurkanY. S. LeongY. DongH. CookJ. AxfordA. G. CallahanN. KennyC. OmodeiE. A. McGrawP. A. RyanS. A. RitchieM. Turelli and S. L. O'Neill, Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature, 476 (2011), 454-457. doi: 10.1038/nature10356.

[20]

H. Hughes and N. F. Britton, Modeling the use of Wolbachia to control dengue fever transmission, Bulletin of Mathematical Biology, 75 (2013), 796-818. doi: 10.1007/s11538-013-9835-4.

[21]

V. A. JansenM. Turelli and H. C. J. Godfray, Stochastic spread of Wolbachia, Proceedings of the Royal Society of London B: Biological Sciences, 275 (2008), 2769-2776. doi: 10.1098/rspb.2008.0914.

[22]

K. N. Johnson, The impact of Wolbachia on virus infection in mosquitoes, Viruses, 7 (2015), 5705-5717. doi: 10.3390/v7112903.

[23]

R. Maciel-de FreitasR. Souza-SantosC. T. Codeço and R. Lourenço-de Oliveira, Influence of the spatial distribution of human hosts and large size containers on the dispersal of the mosquito Aedes aegypti within the first gonotrophic cycle, Medical and Veterinary Entomology, 24 (2010), 74-82. doi: 10.1111/j.1365-2915.2009.00851.x.

[24]

H. Matano and P. Poláčik, Dynamics of nonnegative solutions of one-dimensional reaction-diffusion equations with localized initial data. Part i: A general quasiconvergence theorem and its consequences, Communications in Partial Differential Equations, 41 (2016), 785-811. doi: 10.1080/03605302.2016.1156697.

[25]

C. B. Muratov and X. Zhong, Threshold phenomena for symmetric-decreasing radial solutions of reaction-diffusion equations, Discrete and Continuous Dynamical Systems, 37 (2017), 915-944. doi: 10.3934/dcds.2017038.

[26]

T. H. Nguyen, H. L. Nguyen, T. Y. Nguyen, S. N. Vu, N. D. Tran, T. N. Le, Q. M. Vien, T. C. Bui, H. T. Le, S. Kutcher, T. P. Hurst, T. T. H. Duong, J. A. L. Jeffery, J. M. Darbro, B. H. Kay, I. Iturbe-Ormaetxe, J. Popovici, B. L. Montgomery, A. P. Turley, F. Zigterman, H. Cook, P. E. Cook, P. H. Johnson, P. A. Ryan, C. J. Paton, S. A. Ritchie, C. P. Simmons, S. L. O'Neill and A. A. Hoffmann, Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control, Parasites & Vectors, 8 (2015), p563. doi: 10.1186/s13071-015-1174-x.

[27]

M. OteroN. Schweigmann and H. G. Solari, A stochastic spatial dynamical model for Aedes aegypti, Bulletin of Mathematical Biology, 70 (2008), 1297-1325. doi: 10.1007/s11538-008-9300-y.

[28]

T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problems, Journal of Differential Equations, 146 (1998), 121-156. doi: 10.1006/jdeq.1998.3414.

[29]

T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problem, Ⅱ, Journal of Differential Equations, 158 (1999), 94-151. doi: 10.1016/S0022-0396(99)80020-5.

[30]

P. Poláčik, Threshold solutions and sharp transitions for nonautonomous parabolic equations on $\mathbb{R}^N$, Archive for Rational Mechanics and Analysis, 199 (2011), 69-97. doi: 10.1007/s00205-010-0316-8.

[31]

S. Rouhani and N. Barton, Speciation and the ''Shifting Balance" in a continuous population, Theoretical Population Biology, 31 (1987), 465-492. doi: 10.1016/0040-5809(87)90016-5.

[32]

M. Strugarek and N. Vauchelet, Reduction to a single closed equation for 2 by 2 reaction-diffusion systems of Lotka-Volterra type, SIAM Journal on Applied Mathematics, 76 (2016), 2060-2080. doi: 10.1137/16M1059217.

[33]

M. Turelli, Cytoplasmic incompatibility in populations with overlapping generations, Evolution, 64 (2010), 232-241. doi: 10.1111/j.1558-5646.2009.00822.x.

[34]

F. Vavre and S. Charlat, Making (good) use of Wolbachia: What the models say, Current Opinion in Microbiology, 15 (2012), 263-268. doi: 10.1016/j.mib.2012.03.005.

[35]

D. A. M. Villela, C. T. Codeço, F. Figueiredo, G. A. Garcia, R. Maciel-de Freitas and C. J. Struchiner, A Bayesian hierarchical model for estimation of abundance and spatial density of Aedes aegypti, PLoS ONE, 10 (2015), e0123794. doi: 10.1371/journal.pone.0123794.

[36]

T. WalkerP. H. JohnsonL. A. MoreiraI. Iturbe-OrmaetxeF. D. FrentiuC. J. McMenimanY. S. LeongY. DongJ. AxfordP. KriesnerA. L. LloydS. A. RitchieS. L. O'Neill and A. A. Hoffmann, The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, 476 (2011), 450-453. doi: 10.1038/nature10355.

[37]

H. L. YeapP. MeeT. WalkerA. R. WeeksS. L. O'NeillP. JohnsonS. A. RitchieK. M. RichardsonC. DoigN. M. Endersby and A. A. Hoffmann, Dynamics of the "Popcorn" Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control, Genetics, 187 (2011), 583-595. doi: 10.1534/genetics.110.122390.

[38]

H. L. YeapG. RasicN. M. Endersby-HarshmanS. F. LeeE. ArguniH. Le Nguyen and A. A. Hoffmann, Mitochondrial DNA variants help monitor the dynamics of Wolbachia invasion into host populations, Heredity, 116 (2016), 265-276. doi: 10.1038/hdy.2015.97.

[39]

B. ZhengM. TangJ. Yu and J. Qiu, Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, Journal of Mathematical Biology, 76 (2018), 235-263. doi: 10.1007/s00285-017-1142-5.

[40]

A. Zlatos, Sharp transition between extinction and propagation of reaction, Journal of the American Mathematical Society, 19 (2006), 251-263. doi: 10.1090/S0894-0347-05-00504-7.

Figure 1.  Profile of $f$ defined in (2) (left) and of its anti-derivative $F$ (right) with parameters given by (5).
Figure 2.  Time dynamics with three different initial releases belonging to the set $RP_{50}^2(N)$ of (10), with $N/(N+N_0) = 0.75$. Integration is performed on the domain $[-L, L]$ with $L = 50 \textrm{km}$. The release box is plotted in dashed red on the first picture of each configuration. Left: Release box $[-2 L/3, 2 L/3]^2$. Center: Release box $[-L/2, L/2]^2$. Right: Release box $[-L/12.5, L/12.5]^2$. From top to bottom: increasing time $t \in \{0, 1, 25, 50, 75\}$, in days. The color indicates the value of $p$ (with the scale on the right).
Figure 3.  Comparison of minimal invasion radii $R_{\alpha}$ (obtained by energy) in dashed line and $L_{\alpha}$ (obtained by critical bubbles) in solid line, varying with the maximal infection frequency level $\alpha$. The scale is such that $\sigma=1$.
Figure 4.  Two $G_{\sigma}$ profiles and their sum (in thick line). The level $G_{\sigma} (0)$ is the dashed line. On the left, $h=\sqrt{2\log(2)\sigma}$. On the right, $h>\sqrt{2\log(2)\sigma}$.
Figure 5.  Under-estimation $\beta^{\lambda, R^*} (-L, L)$ of introduction success probability for $L$ ranging from $R^*/2 = 5.49$ to $3 R^*/2 = 16.47$. The seven curves correspond to increasing number of release points. (From bottom to top: $20$ to $80$ release points).
Figure 6.  Effect of losing the constant $2 \sqrt{2 \log(2)}$ in Proposition 6: under-estimation $\beta^{\lambda, R^*} (-L, L)$ of introduction success probability for $L$ ranging from $R^*/2 = 5.49$ to $3 R^*/2 = 16.47$, with $80$ release points.
[1]

Xin Li, Xingfu Zou. On a reaction-diffusion model for sterile insect release method with release on the boundary. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2509-2522. doi: 10.3934/dcdsb.2012.17.2509

[2]

Keng Deng. On a nonlocal reaction-diffusion population model. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 65-73. doi: 10.3934/dcdsb.2008.9.65

[3]

M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079

[4]

Keng Deng, Yixiang Wu. Asymptotic behavior for a reaction-diffusion population model with delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 385-395. doi: 10.3934/dcdsb.2015.20.385

[5]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[6]

Heather Finotti, Suzanne Lenhart, Tuoc Van Phan. Optimal control of advective direction in reaction-diffusion population models. Evolution Equations & Control Theory, 2012, 1 (1) : 81-107. doi: 10.3934/eect.2012.1.81

[7]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[8]

Elena Trofimchuk, Sergei Trofimchuk. Admissible wavefront speeds for a single species reaction-diffusion equation with delay. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 407-423. doi: 10.3934/dcds.2008.20.407

[9]

Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875

[10]

Elena Beretta, Cecilia Cavaterra. Identifying a space dependent coefficient in a reaction-diffusion equation. Inverse Problems & Imaging, 2011, 5 (2) : 285-296. doi: 10.3934/ipi.2011.5.285

[11]

Michio Urano, Kimie Nakashima, Yoshio Yamada. Transition layers and spikes for a reaction-diffusion equation with bistable nonlinearity. Conference Publications, 2005, 2005 (Special) : 868-877. doi: 10.3934/proc.2005.2005.868

[12]

Takanori Ide, Kazuhiro Kurata, Kazunaga Tanaka. Multiple stable patterns for some reaction-diffusion equation in disrupted environments. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 93-116. doi: 10.3934/dcds.2006.14.93

[13]

Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reaction-diffusion equation. Evolution Equations & Control Theory, 2015, 4 (1) : 39-59. doi: 10.3934/eect.2015.4.39

[14]

Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029

[15]

Henri Berestycki, Luca Rossi. Reaction-diffusion equations for population dynamics with forced speed II - cylindrical-type domains. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 19-61. doi: 10.3934/dcds.2009.25.19

[16]

Guangrui Li, Ming Mei, Yau Shu Wong. Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Mathematical Biosciences & Engineering, 2008, 5 (1) : 85-100. doi: 10.3934/mbe.2008.5.85

[17]

Henri Berestycki, Luca Rossi. Reaction-diffusion equations for population dynamics with forced speed I - The case of the whole space. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 41-67. doi: 10.3934/dcds.2008.21.41

[18]

Andrew J. Majda, Michal Branicki. Lessons in uncertainty quantification for turbulent dynamical systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3133-3221. doi: 10.3934/dcds.2012.32.3133

[19]

H. T. Banks, Robert Baraldi, Karissa Cross, Kevin Flores, Christina McChesney, Laura Poag, Emma Thorpe. Uncertainty quantification in modeling HIV viral mechanics. Mathematical Biosciences & Engineering, 2015, 12 (5) : 937-964. doi: 10.3934/mbe.2015.12.937

[20]

Alex Capaldi, Samuel Behrend, Benjamin Berman, Jason Smith, Justin Wright, Alun L. Lloyd. Parameter estimation and uncertainty quantification for an epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (3) : 553-576. doi: 10.3934/mbe.2012.9.553

2016 Impact Factor: 1.035

Metrics

  • PDF downloads (24)
  • HTML views (93)
  • Cited by (0)

[Back to Top]