June 2018, 15(3): 693-715. doi: 10.3934/mbe.2018031

Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect

Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China

* Corresponding author. Email: weijj@hit.edu.cn

Received  March 14, 2017 Accepted  September 30, 2017 Published  December 2017

Fund Project: This research is supported by National Natural Science Foundation of China (Nos.11371111 and 11771109)

A diffusive predator-prey system with a delay and surplus killing effect subject to Neumann boundary conditions is considered. When the delay is zero, the prior estimate of positive solutions and global stability of the constant positive steady state are obtained in details. When the delay is not zero, the stability of the positive equilibrium and existence of Hopf bifurcation are established by analyzing the distribution of eigenvalues. Furthermore, an algorithm for determining the direction of Hopf bifurcation and stability of bifurcating periodic solutions is derived by using the theory of normal form and center manifold. Finally, some numerical simulations are presented to illustrate the analytical results obtained.

Citation: Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031
References:
[1]

A. Bjärvall and E. Nilsson, Surplus-killing of reindeer by wolves, Journal of Mammalogy , 57 (1976), p585.

[2]

P. A. Braza, Predator-prey dynamics with square root functional responses, Nonlinear Analysis: Real World Applications, 13 (2012), 1837-1843. doi: 10.1016/j.nonrwa.2011.12.014.

[3]

S. S. Chen and J. P. Shi, Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect, Journal of Differential Equations, 253 (2012), 3440-3470. doi: 10.1016/j.jde.2012.08.031.

[4]

S. S. ChenJ. P. Shi and J. J. Wei, The effect of delay on a diffusive predator-prey system with Holling Type-Ⅱ predator functional response, Communications on Pure & Applied Analysis, 12 (2013), 481-501. doi: 10.3934/cpaa.2013.12.481.

[5]

R. J. Conover, Factors affecting the assimilation of organic matter by zooplankton and the question of superfluous feeding, Limnol Oceanogr, 11 (1966), 346-354.

[6]

K. L. Cooke and Z. Grossman, Discrete delay, distributed delay and stability switches, Journal of Mathematical Analysis & Applications, 86 (1982), 592-627. doi: 10.1016/0022-247X(82)90243-8.

[7]

Y. H. Du and L. Mei, On a nonlocal reaction-diffusion-advection equation modelling phytoplankton dynamics, Nonlinearity, 24 (2011), 319-349. doi: 10.1088/0951-7715/24/1/016.

[8]

Y. H. Du and J. P. Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous environment, Nonlinear Dynamics and Evolution Equations, 48 (2006), 95-135.

[9]

S. EhrlingeB. Bergsten and B. Kristiansson, The stoat and its prey: hunting behavior and escape reactions, Fauna Flora, 69 (1974a), 203-211.

[10]

T. Faria, Normal forms and Hopf bifurcation for partial differential equations with delays, Transactions of the American Mathematical Society, 352 (2000), 2217-2238. doi: 10.1090/S0002-9947-00-02280-7.

[11]

D. J. Formanowitz, Foraging tactics of an aquatic insect: Partial consumption of prey, Anim Behav, 32 (1984), 774-781. doi: 10.1016/S0003-3472(84)80153-0.

[12]

H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Monographs and Textbooks in Pure and Applied Mathematics, 57. Marcel Dekker, Inc., New York, 1980.

[13]

B. Hassard, N. Kazarinoff and Y. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981.

[14]

C. S. Holling, Some characteristics of simple types of predation and parasitism, Canadian Entomologist, 91 (1959), 385-398. doi: 10.4039/Ent91385-7.

[15]

C. B. Huffaker, Exerimental studies on predation: Despersion factors and predator-prey oscilasions, Hilgardia, 27 (1958), 343-383.

[16]

H. Kruuk, The Spotted Hyena: A Study of Predation and Social Behavior, University of Chicago Press, Chicago, 1972.

[17]

H. Kruuk, Surplus killing by carnivores, Journal of Zoology, 166 (1972), 233-244. doi: 10.1111/j.1469-7998.1972.tb04087.x.

[18]

X. LinJ. So and J. H. Wu, Centre manifolds for partial differential equations with delays, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 122 (1992), 237-254. doi: 10.1017/S0308210500021090.

[19]

J. L. Maupin and S. E. Riechert, Superfluous killing in spiders: A consequence of adaptation to food-limited environments?, Behavioral Ecology, 12 (2001), 569-576. doi: 10.1093/beheco/12.5.569.

[20]

L. S. Mills, Conservation of Wildlife Populations: Demography, Genetics, and Management, Wiley-Blackwell, Oxford, 2013.

[21]

P. de Motoni and F. Rothe, Convergence to homogeneous equilibrium state for generalized Volterra-Lotka systems, Siam Journal on Applied Mathematics, 37 (1979), 648-663. doi: 10.1137/0137048.

[22]

J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1993. doi: 10.1007/b98869.

[23]

C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.

[24]

C. V. Pao, Convergence of solutions of reaction-diffusion systems with time delays, Nonlinear Analysis: Theory, Methods & Applications, 48 (2002), 349-362. doi: 10.1016/S0362-546X(00)00189-9.

[25]

C. V. Pao, Systems of parabolic equations with continuous and discrete delays, Journal of Mathematical Analysis and Applications, 205 (1997), 157-185. doi: 10.1006/jmaa.1996.5177.

[26]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[27]

M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, American Naturalist, 97 (1963), 209-223. doi: 10.1086/282272.

[28]

S. G. Ruan, Persistence and coexistence in zooplankton-phytoplankton-nutrient models with instantaneous nutrient recycling, Journal of Mathematical Biology, 31 (1993), 633-654. doi: 10.1007/BF00161202.

[29]

S. G. Ruan and J. J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dynamics of Continuous Discrete and Impulsive Systems Series A, 10 (2003), 863-874.

[30]

F. Samu and Z. Bíró Z, Functional response, multiple feeding, and wasteful killing in a wolf spider (Araneae: Lycosidae), European Journal of Entomology, 90 (1993), 471-476.

[31]

C. T. Stuart, The incidence of surplus killing by Panthera pardus and Felis caracal in Cape Province, South Africa. Mammalia, 50 (1986), 556-558.

[32]

V. Volterra, Variazione e fluttuazini del numero d'individui in specie animali conviventi, Mem. Accad. Nazionale Lincei, 2 (1926), 31-113.

[33]

J. H. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, New York, 1996. doi: 10.1007/978-1-4612-4050-1.

[34]

Q. X. Ye and Z. Y. Li, Introduction to Reaction-Diffusion Equations, Science Press, China, 1994 (in Chinese).

[35]

F. Q. YiJ. J. Wei and J. P. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, Journal of Differential Equations, 246 (2009), 1944-1977. doi: 10.1016/j.jde.2008.10.024.

[36]

J. T. Zhao and J. J. Wei, Dynamics in a diffusive plankton system with delay and toxic substances effect, Nonlinear Analysis Real World Applications, 22 (2015), 66-83. doi: 10.1016/j.nonrwa.2014.07.010.

show all references

References:
[1]

A. Bjärvall and E. Nilsson, Surplus-killing of reindeer by wolves, Journal of Mammalogy , 57 (1976), p585.

[2]

P. A. Braza, Predator-prey dynamics with square root functional responses, Nonlinear Analysis: Real World Applications, 13 (2012), 1837-1843. doi: 10.1016/j.nonrwa.2011.12.014.

[3]

S. S. Chen and J. P. Shi, Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect, Journal of Differential Equations, 253 (2012), 3440-3470. doi: 10.1016/j.jde.2012.08.031.

[4]

S. S. ChenJ. P. Shi and J. J. Wei, The effect of delay on a diffusive predator-prey system with Holling Type-Ⅱ predator functional response, Communications on Pure & Applied Analysis, 12 (2013), 481-501. doi: 10.3934/cpaa.2013.12.481.

[5]

R. J. Conover, Factors affecting the assimilation of organic matter by zooplankton and the question of superfluous feeding, Limnol Oceanogr, 11 (1966), 346-354.

[6]

K. L. Cooke and Z. Grossman, Discrete delay, distributed delay and stability switches, Journal of Mathematical Analysis & Applications, 86 (1982), 592-627. doi: 10.1016/0022-247X(82)90243-8.

[7]

Y. H. Du and L. Mei, On a nonlocal reaction-diffusion-advection equation modelling phytoplankton dynamics, Nonlinearity, 24 (2011), 319-349. doi: 10.1088/0951-7715/24/1/016.

[8]

Y. H. Du and J. P. Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous environment, Nonlinear Dynamics and Evolution Equations, 48 (2006), 95-135.

[9]

S. EhrlingeB. Bergsten and B. Kristiansson, The stoat and its prey: hunting behavior and escape reactions, Fauna Flora, 69 (1974a), 203-211.

[10]

T. Faria, Normal forms and Hopf bifurcation for partial differential equations with delays, Transactions of the American Mathematical Society, 352 (2000), 2217-2238. doi: 10.1090/S0002-9947-00-02280-7.

[11]

D. J. Formanowitz, Foraging tactics of an aquatic insect: Partial consumption of prey, Anim Behav, 32 (1984), 774-781. doi: 10.1016/S0003-3472(84)80153-0.

[12]

H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Monographs and Textbooks in Pure and Applied Mathematics, 57. Marcel Dekker, Inc., New York, 1980.

[13]

B. Hassard, N. Kazarinoff and Y. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981.

[14]

C. S. Holling, Some characteristics of simple types of predation and parasitism, Canadian Entomologist, 91 (1959), 385-398. doi: 10.4039/Ent91385-7.

[15]

C. B. Huffaker, Exerimental studies on predation: Despersion factors and predator-prey oscilasions, Hilgardia, 27 (1958), 343-383.

[16]

H. Kruuk, The Spotted Hyena: A Study of Predation and Social Behavior, University of Chicago Press, Chicago, 1972.

[17]

H. Kruuk, Surplus killing by carnivores, Journal of Zoology, 166 (1972), 233-244. doi: 10.1111/j.1469-7998.1972.tb04087.x.

[18]

X. LinJ. So and J. H. Wu, Centre manifolds for partial differential equations with delays, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 122 (1992), 237-254. doi: 10.1017/S0308210500021090.

[19]

J. L. Maupin and S. E. Riechert, Superfluous killing in spiders: A consequence of adaptation to food-limited environments?, Behavioral Ecology, 12 (2001), 569-576. doi: 10.1093/beheco/12.5.569.

[20]

L. S. Mills, Conservation of Wildlife Populations: Demography, Genetics, and Management, Wiley-Blackwell, Oxford, 2013.

[21]

P. de Motoni and F. Rothe, Convergence to homogeneous equilibrium state for generalized Volterra-Lotka systems, Siam Journal on Applied Mathematics, 37 (1979), 648-663. doi: 10.1137/0137048.

[22]

J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1993. doi: 10.1007/b98869.

[23]

C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.

[24]

C. V. Pao, Convergence of solutions of reaction-diffusion systems with time delays, Nonlinear Analysis: Theory, Methods & Applications, 48 (2002), 349-362. doi: 10.1016/S0362-546X(00)00189-9.

[25]

C. V. Pao, Systems of parabolic equations with continuous and discrete delays, Journal of Mathematical Analysis and Applications, 205 (1997), 157-185. doi: 10.1006/jmaa.1996.5177.

[26]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[27]

M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, American Naturalist, 97 (1963), 209-223. doi: 10.1086/282272.

[28]

S. G. Ruan, Persistence and coexistence in zooplankton-phytoplankton-nutrient models with instantaneous nutrient recycling, Journal of Mathematical Biology, 31 (1993), 633-654. doi: 10.1007/BF00161202.

[29]

S. G. Ruan and J. J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dynamics of Continuous Discrete and Impulsive Systems Series A, 10 (2003), 863-874.

[30]

F. Samu and Z. Bíró Z, Functional response, multiple feeding, and wasteful killing in a wolf spider (Araneae: Lycosidae), European Journal of Entomology, 90 (1993), 471-476.

[31]

C. T. Stuart, The incidence of surplus killing by Panthera pardus and Felis caracal in Cape Province, South Africa. Mammalia, 50 (1986), 556-558.

[32]

V. Volterra, Variazione e fluttuazini del numero d'individui in specie animali conviventi, Mem. Accad. Nazionale Lincei, 2 (1926), 31-113.

[33]

J. H. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, New York, 1996. doi: 10.1007/978-1-4612-4050-1.

[34]

Q. X. Ye and Z. Y. Li, Introduction to Reaction-Diffusion Equations, Science Press, China, 1994 (in Chinese).

[35]

F. Q. YiJ. J. Wei and J. P. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, Journal of Differential Equations, 246 (2009), 1944-1977. doi: 10.1016/j.jde.2008.10.024.

[36]

J. T. Zhao and J. J. Wei, Dynamics in a diffusive plankton system with delay and toxic substances effect, Nonlinear Analysis Real World Applications, 22 (2015), 66-83. doi: 10.1016/j.nonrwa.2014.07.010.

Figure 1.  The critical curve on $(m_1,\gamma)$ plane. Ⅰ: $E_*(u_*,v_*)$ is global asymptotically stable; Ⅱ: $E_*(u_*,v_*)$ is local asymptotically stable; Ⅲ: $E_*(u_*,v_*)$ disappears while $E_1(0,1)$ is global asymptotically stable. The parameters are chosen as follows: $\alpha=0.3$, $K_2=0.2$, $\theta=0.5$ with $m_2=\alpha m_1/K_2$.
Figure 2.  The positive equilibrium is asymptotically stable when $\tau\in[0, \tau^*)$, where $\tau=2<\tau^*\approx4.6242$.
Figure 3.  The bifurcating periodic solution is stable, where $\tau=5>\tau^*\approx4.6242$.
Figure 4.  The axial equilibrium $E_1(0,1)$ is global asymptotically stable.
[1]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

[2]

Shanshan Chen, Junping Shi, Junjie Wei. The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure & Applied Analysis, 2013, 12 (1) : 481-501. doi: 10.3934/cpaa.2013.12.481

[3]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[4]

Leonid Braverman, Elena Braverman. Stability analysis and bifurcations in a diffusive predator-prey system. Conference Publications, 2009, 2009 (Special) : 92-100. doi: 10.3934/proc.2009.2009.92

[5]

Canan Çelik. Dynamical behavior of a ratio dependent predator-prey system with distributed delay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 719-738. doi: 10.3934/dcdsb.2011.16.719

[6]

Marcos Lizana, Julio Marín. On the dynamics of a ratio dependent Predator-Prey system with diffusion and delay. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1321-1338. doi: 10.3934/dcdsb.2006.6.1321

[7]

Peng Feng. On a diffusive predator-prey model with nonlinear harvesting. Mathematical Biosciences & Engineering, 2014, 11 (4) : 807-821. doi: 10.3934/mbe.2014.11.807

[8]

Guanqi Liu, Yuwen Wang. Stochastic spatiotemporal diffusive predator-prey systems. Communications on Pure & Applied Analysis, 2018, 17 (1) : 67-84. doi: 10.3934/cpaa.2018005

[9]

Na Min, Mingxin Wang. Dynamics of a diffusive prey-predator system with strong Allee effect growth rate and a protection zone for the prey. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1721-1737. doi: 10.3934/dcdsb.2018073

[10]

Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065

[11]

Xiaoli Liu, Dongmei Xiao. Bifurcations in a discrete time Lotka-Volterra predator-prey system. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 559-572. doi: 10.3934/dcdsb.2006.6.559

[12]

Xiaoling Li, Guangping Hu, Zhaosheng Feng, Dongliang Li. A periodic and diffusive predator-prey model with disease in the prey. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 445-461. doi: 10.3934/dcdss.2017021

[13]

Yujing Gao, Bingtuan Li. Dynamics of a ratio-dependent predator-prey system with a strong Allee effect. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2283-2313. doi: 10.3934/dcdsb.2013.18.2283

[14]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[15]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[16]

S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences & Engineering, 2006, 3 (1) : 173-187. doi: 10.3934/mbe.2006.3.173

[17]

Liang Zhang, Zhi-Cheng Wang. Spatial dynamics of a diffusive predator-prey model with stage structure. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1831-1853. doi: 10.3934/dcdsb.2015.20.1831

[18]

Xiang-Sheng Wang, Haiyan Wang, Jianhong Wu. Traveling waves of diffusive predator-prey systems: Disease outbreak propagation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3303-3324. doi: 10.3934/dcds.2012.32.3303

[19]

Shanshan Chen. Nonexistence of nonconstant positive steady states of a diffusive predator-prey model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 477-485. doi: 10.3934/cpaa.2018026

[20]

Jing-An Cui, Xinyu Song. Permanence of predator-prey system with stage structure. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 547-554. doi: 10.3934/dcdsb.2004.4.547

2016 Impact Factor: 1.035

Article outline

Figures and Tables

[Back to Top]