
-
Previous Article
Spatially-implicit modelling of disease-behaviour interactions in the context of non-pharmaceutical interventions
- MBE Home
- This Issue
-
Next Article
Formulation of the protein synthesis rate with sequence information
Optimal vaccination strategies for an SEIR model of infectious diseases with logistic growth
Chair of Mathematics in Engineering Sciences, University of Bayreuth, Bayreuth, D 95440, Germany |
In this paper an improved SEIR model for an infectious disease is presented which includes logistic growth for the total population. The aim is to develop optimal vaccination strategies against the spread of a generic disease. These vaccination strategies arise from the study of optimal control problems with various kinds of constraints including mixed control-state and state constraints. After presenting the new model and implementing the optimal control problems by means of a first-discretize-then-optimize method, numerical results for six scenarios are discussed and compared to an analytical optimal control law based on Pontrygin's minimum principle that allows to verify these results as approximations of candidate optimal solutions.
References:
[1] |
F. Bauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Part IV 2nd edition, Springer-Verlag, New York, 2012.
doi: 10.1007/978-1-4614-1686-9. |
[2] |
M. H. A. Biswas, L. T. Paiva and MdR. de Pinho,
A SEIR model for control of infectious diseases with constraints, Mathematical Biosciences and Engineering, 11 (2014), 761-784.
doi: 10.3934/mbe.2014.11.761. |
[3] |
A. E. Bryson, W. F. Denham and S. E. Dreyfus,
Optimal Programming Problems with Inequality Constraints I, AIAA Journal, 1 (1963), 2544-2550.
doi: 10.2514/3.2107. |
[4] |
O. Diekmann, H. Heesterbeek and T. Britton, Mathematical Tools for Understanding Infectious Disease Dynamics, Princton University Press, Princton, 2013.
![]() |
[5] |
R. Fourer, D. Gay and B. Kernighan, AMPL: A Modeling Language for Mathematical Programming Duxbury Press, Pacific Grove, 2002. |
[6] |
W. E. Hamilton, On nonexistence of boundary arcs in control problems with bounded state variables, IEEE Transactions on Automatic Control, AC-17 (1972), 338-343. |
[7] |
R. F. Hartl, S. P. Sethi and R. G. Vickson,
A survey of the maximum principles for optimal control problems with state constraints, SIAM Review, 37 (1995), 181-218.
doi: 10.1137/1037043. |
[8] |
K. Ito and K. Kunisch,
Asymptotic properties of receding horizont optimal control problems, SIAM J. Control Optim., 40 (2002), 1585-1610.
doi: 10.1137/S0363012900369423. |
[9] |
D. H. Jacobson, M. M. Lele and J. L.. Speyer,
New necessary conditions of optimality for control problems with state variable inequality constraints, Journal of Mathematical Analysis and Applications, 35 (1971), 255-284.
doi: 10.1016/0022-247X(71)90219-8. |
[10] |
I. Kornienko, L. T. Paiva and MdR. de Pinho,
Introducing state constraints in optimal control for health problems, Procedia Technology, 17 (2014), 415-422.
doi: 10.1016/j.protcy.2014.10.249. |
[11] |
V. Lykina, Beiträge zur Theorie der Optimalsteuerungsprobleme mit unendlichem Zeithorizont, Dissertation, Brandenburgische Technische Universität Cottbus, Germany, 2010, http://opus.kobv.de/btu/volltexte/2010/1861/pdf/dissertationLykina.pdf. |
[12] |
V. Lykina, S. Pickenhain and M. Wagner,
On a resource allocation model with infinite horizon, Applied Mathematics and Computation, 204 (2008), 595-601.
doi: 10.1016/j.amc.2008.05.041. |
[13] |
H. Maurer and H. J Pesch,
Direct optimization methods for solving a complex state-constrained optimal control problem in microeconomics, Applied Mathematics and Computation, 204 (2008), 568-579.
doi: 10.1016/j.amc.2008.05.035. |
[14] |
H. Maurer and MdR. de Pinho,
Optimal control of epidemiological SEIR models with L1-objectives and control-state constraints, Pac. J. Optim., 12 (2016), 415-436.
|
[15] |
J. D. Murray, Mathematical Biology: Ⅰ An Introduction 3rd edition, Springer-Verlag, New York, 2002. |
[16] |
J. D. Murray, Mathematical Biology: Ⅱ Spatial Models and Biomedical Applications 3rd edition, Springer-Verlag, New York, 2003. |
[17] |
R. M. Neilan and S. Lenhart,
An introduction to optimal control with an application in disease modeling, DIMACS Series in Discrete Mathematics, 75 (2010), 67-81.
|
[18] |
H. J. Pesch,
A practical guide to the solution of real-life optimal control problems, Control and Cybernetics, 23 (1994), 7-60.
|
[19] |
S. Pickenhain,
Infinite horizon optimal control problems in the light of convex analysis in Hilbert Spaces, Set-Valued and Variational Analysis, 23 (2015), 169-189.
doi: 10.1007/s11228-014-0304-5. |
[20] |
M. Plail and H. J. Pesch, The Cold War and the maximum principle of optimal control, Doc. Math. , 2012, Extra vol. : Optimization stories, 331–343. |
[21] |
H. Schättler, U. Ledzewicz and H. Maurer,
Sufficient conditions for strong local optimality in optimal control problems of L:2-type objectives and control constraints, Dicrete and Continuous Dynamical Systems Series B, 19 (2014), 2657-2679.
doi: 10.3934/dcdsb.2014.19.2657. |
[22] |
M. Thäter, Restringierte Optimalsteuerungsprobleme bei Epidemiemodellen Master Thesis, Department of Mathematics, University of Bayreuth in Bayreuth, 2014. |
[23] |
P.-F. Verhulst, Notice sur la loi que la population suit dans son accroissement, Correspondance Mathématique et Physique, 10 (1838), 113-121. |
[24] |
A. Wächter, An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications in Process Engineering PhD Thesis, Carnegie Mellon University in Pittsburgh, 2002. |
[25] |
A. Wächter and L.T. Biegler,
On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57.
doi: 10.1007/s10107-004-0559-y. |
[26] |
D. Wenzke, V. Lykina and S. Pickenhain,
State and time transformations of infinite horizon optimal control problems, Contemporary Mathematics Series of The AMS, 619 (2014), 189-208.
doi: 10.1090/conm/619/12391. |
show all references
References:
[1] |
F. Bauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Part IV 2nd edition, Springer-Verlag, New York, 2012.
doi: 10.1007/978-1-4614-1686-9. |
[2] |
M. H. A. Biswas, L. T. Paiva and MdR. de Pinho,
A SEIR model for control of infectious diseases with constraints, Mathematical Biosciences and Engineering, 11 (2014), 761-784.
doi: 10.3934/mbe.2014.11.761. |
[3] |
A. E. Bryson, W. F. Denham and S. E. Dreyfus,
Optimal Programming Problems with Inequality Constraints I, AIAA Journal, 1 (1963), 2544-2550.
doi: 10.2514/3.2107. |
[4] |
O. Diekmann, H. Heesterbeek and T. Britton, Mathematical Tools for Understanding Infectious Disease Dynamics, Princton University Press, Princton, 2013.
![]() |
[5] |
R. Fourer, D. Gay and B. Kernighan, AMPL: A Modeling Language for Mathematical Programming Duxbury Press, Pacific Grove, 2002. |
[6] |
W. E. Hamilton, On nonexistence of boundary arcs in control problems with bounded state variables, IEEE Transactions on Automatic Control, AC-17 (1972), 338-343. |
[7] |
R. F. Hartl, S. P. Sethi and R. G. Vickson,
A survey of the maximum principles for optimal control problems with state constraints, SIAM Review, 37 (1995), 181-218.
doi: 10.1137/1037043. |
[8] |
K. Ito and K. Kunisch,
Asymptotic properties of receding horizont optimal control problems, SIAM J. Control Optim., 40 (2002), 1585-1610.
doi: 10.1137/S0363012900369423. |
[9] |
D. H. Jacobson, M. M. Lele and J. L.. Speyer,
New necessary conditions of optimality for control problems with state variable inequality constraints, Journal of Mathematical Analysis and Applications, 35 (1971), 255-284.
doi: 10.1016/0022-247X(71)90219-8. |
[10] |
I. Kornienko, L. T. Paiva and MdR. de Pinho,
Introducing state constraints in optimal control for health problems, Procedia Technology, 17 (2014), 415-422.
doi: 10.1016/j.protcy.2014.10.249. |
[11] |
V. Lykina, Beiträge zur Theorie der Optimalsteuerungsprobleme mit unendlichem Zeithorizont, Dissertation, Brandenburgische Technische Universität Cottbus, Germany, 2010, http://opus.kobv.de/btu/volltexte/2010/1861/pdf/dissertationLykina.pdf. |
[12] |
V. Lykina, S. Pickenhain and M. Wagner,
On a resource allocation model with infinite horizon, Applied Mathematics and Computation, 204 (2008), 595-601.
doi: 10.1016/j.amc.2008.05.041. |
[13] |
H. Maurer and H. J Pesch,
Direct optimization methods for solving a complex state-constrained optimal control problem in microeconomics, Applied Mathematics and Computation, 204 (2008), 568-579.
doi: 10.1016/j.amc.2008.05.035. |
[14] |
H. Maurer and MdR. de Pinho,
Optimal control of epidemiological SEIR models with L1-objectives and control-state constraints, Pac. J. Optim., 12 (2016), 415-436.
|
[15] |
J. D. Murray, Mathematical Biology: Ⅰ An Introduction 3rd edition, Springer-Verlag, New York, 2002. |
[16] |
J. D. Murray, Mathematical Biology: Ⅱ Spatial Models and Biomedical Applications 3rd edition, Springer-Verlag, New York, 2003. |
[17] |
R. M. Neilan and S. Lenhart,
An introduction to optimal control with an application in disease modeling, DIMACS Series in Discrete Mathematics, 75 (2010), 67-81.
|
[18] |
H. J. Pesch,
A practical guide to the solution of real-life optimal control problems, Control and Cybernetics, 23 (1994), 7-60.
|
[19] |
S. Pickenhain,
Infinite horizon optimal control problems in the light of convex analysis in Hilbert Spaces, Set-Valued and Variational Analysis, 23 (2015), 169-189.
doi: 10.1007/s11228-014-0304-5. |
[20] |
M. Plail and H. J. Pesch, The Cold War and the maximum principle of optimal control, Doc. Math. , 2012, Extra vol. : Optimization stories, 331–343. |
[21] |
H. Schättler, U. Ledzewicz and H. Maurer,
Sufficient conditions for strong local optimality in optimal control problems of L:2-type objectives and control constraints, Dicrete and Continuous Dynamical Systems Series B, 19 (2014), 2657-2679.
doi: 10.3934/dcdsb.2014.19.2657. |
[22] |
M. Thäter, Restringierte Optimalsteuerungsprobleme bei Epidemiemodellen Master Thesis, Department of Mathematics, University of Bayreuth in Bayreuth, 2014. |
[23] |
P.-F. Verhulst, Notice sur la loi que la population suit dans son accroissement, Correspondance Mathématique et Physique, 10 (1838), 113-121. |
[24] |
A. Wächter, An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications in Process Engineering PhD Thesis, Carnegie Mellon University in Pittsburgh, 2002. |
[25] |
A. Wächter and L.T. Biegler,
On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57.
doi: 10.1007/s10107-004-0559-y. |
[26] |
D. Wenzke, V. Lykina and S. Pickenhain,
State and time transformations of infinite horizon optimal control problems, Contemporary Mathematics Series of The AMS, 619 (2014), 189-208.
doi: 10.1090/conm/619/12391. |












Parameters | Definitions | Units | Values |
natural birth rate | unit of time | 0.525 | |
| natural death rate | unit of time | 0.5 |
| incidence coefficient | | 0.001 |
| exposed to infectious rate | unit of time | 0.5 |
| natural recovery rate | unit of time | 0.1 |
| disease induced death rate | unit of time | 0.1 |
| maximum vaccination rate | unit of time | 1 |
| maximum available vaccines | unit of capita | various |
| upper bound in Eq. 34 | | various |
| upper bound in Eq. 38 | unit of capita | various |
| weight parameter | | 0.1 |
| weight parameter | unit of money | 1 |
| initial time | unit of time (years) | 0 |
| final time | unit of time (years) | 20 |
| initial susceptible population | unit of capita | 1000 |
| initial exposed population | unit of capita | 100 |
| initial infected population | unit of capita | 50 |
| initial recovered population | unit of capita | 15 |
| initial total population | unit of capita | 1165 |
| initial vaccinated population | unit of capita | 0 |
Parameters | Definitions | Units | Values |
natural birth rate | unit of time | 0.525 | |
| natural death rate | unit of time | 0.5 |
| incidence coefficient | | 0.001 |
| exposed to infectious rate | unit of time | 0.5 |
| natural recovery rate | unit of time | 0.1 |
| disease induced death rate | unit of time | 0.1 |
| maximum vaccination rate | unit of time | 1 |
| maximum available vaccines | unit of capita | various |
| upper bound in Eq. 34 | | various |
| upper bound in Eq. 38 | unit of capita | various |
| weight parameter | | 0.1 |
| weight parameter | unit of money | 1 |
| initial time | unit of time (years) | 0 |
| final time | unit of time (years) | 20 |
| initial susceptible population | unit of capita | 1000 |
| initial exposed population | unit of capita | 100 |
| initial infected population | unit of capita | 50 |
| initial recovered population | unit of capita | 15 |
| initial total population | unit of capita | 1165 |
| initial vaccinated population | unit of capita | 0 |
[1] |
M. H. A. Biswas, L. T. Paiva, MdR de Pinho. A SEIR model for control of infectious diseases with constraints. Mathematical Biosciences & Engineering, 2014, 11 (4) : 761-784. doi: 10.3934/mbe.2014.11.761 |
[2] |
Martin Luther Mann Manyombe, Joseph Mbang, Jean Lubuma, Berge Tsanou. Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers. Mathematical Biosciences & Engineering, 2016, 13 (4) : 813-840. doi: 10.3934/mbe.2016019 |
[3] |
IvÁn Area, FaÏÇal NdaÏrou, Juan J. Nieto, Cristiana J. Silva, Delfim F. M. Torres. Ebola model and optimal control with vaccination constraints. Journal of Industrial & Management Optimization, 2018, 14 (2) : 427-446. doi: 10.3934/jimo.2017054 |
[4] |
Hongbin Guo, Michael Yi Li. Global dynamics of a staged progression model for infectious diseases. Mathematical Biosciences & Engineering, 2006, 3 (3) : 513-525. doi: 10.3934/mbe.2006.3.513 |
[5] |
Arvind Kumar Misra, Rajanish Kumar Rai, Yasuhiro Takeuchi. Modeling the control of infectious diseases: Effects of TV and social media advertisements. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1315-1343. doi: 10.3934/mbe.2018061 |
[6] |
Yali Yang, Sanyi Tang, Xiaohong Ren, Huiwen Zhao, Chenping Guo. Global stability and optimal control for a tuberculosis model with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 1009-1022. doi: 10.3934/dcdsb.2016.21.1009 |
[7] |
Yinggao Zhou, Jianhong Wu, Min Wu. Optimal isolation strategies of emerging infectious diseases with limited resources. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1691-1701. doi: 10.3934/mbe.2013.10.1691 |
[8] |
Edoardo Beretta, Dimitri Breda. An SEIR epidemic model with constant latency time and infectious period. Mathematical Biosciences & Engineering, 2011, 8 (4) : 931-952. doi: 10.3934/mbe.2011.8.931 |
[9] |
Ellina Grigorieva, Evgenii Khailov. Optimal control of a nonlinear model of economic growth. Conference Publications, 2007, 2007 (Special) : 456-466. doi: 10.3934/proc.2007.2007.456 |
[10] |
Siyu Liu, Yong Li, Yingjie Bi, Qingdao Huang. Mixed vaccination strategy for the control of tuberculosis: A case study in China. Mathematical Biosciences & Engineering, 2017, 14 (3) : 695-708. doi: 10.3934/mbe.2017039 |
[11] |
Siyu Liu, Xue Yang, Yingjie Bi, Yong Li. Dynamic behavior and optimal scheduling for mixed vaccination strategy with temporary immunity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1469-1483. doi: 10.3934/dcdsb.2018216 |
[12] |
Shujing Gao, Dehui Xie, Lansun Chen. Pulse vaccination strategy in a delayed sir epidemic model with vertical transmission. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 77-86. doi: 10.3934/dcdsb.2007.7.77 |
[13] |
Aili Wang, Yanni Xiao, Robert A. Cheke. Global dynamics of a piece-wise epidemic model with switching vaccination strategy. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2915-2940. doi: 10.3934/dcdsb.2014.19.2915 |
[14] |
Urszula Ledzewicz, Omeiza Olumoye, Heinz Schättler. On optimal chemotherapy with a strongly targeted agent for a model of tumor-immune system interactions with generalized logistic growth. Mathematical Biosciences & Engineering, 2013, 10 (3) : 787-802. doi: 10.3934/mbe.2013.10.787 |
[15] |
Zhilan Feng, Carlos Castillo-Chavez. The influence of infectious diseases on population genetics. Mathematical Biosciences & Engineering, 2006, 3 (3) : 467-483. doi: 10.3934/mbe.2006.3.467 |
[16] |
Majid Jaberi-Douraki, Seyed M. Moghadas. Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1045-1063. doi: 10.3934/mbe.2014.11.1045 |
[17] |
Maria do Rosário de Pinho, Helmut Maurer, Hasnaa Zidani. Optimal control of normalized SIMR models with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 79-99. doi: 10.3934/dcdsb.2018006 |
[18] |
Yoshiaki Muroya, Yoichi Enatsu, Huaixing Li. A note on the global stability of an SEIR epidemic model with constant latency time and infectious period. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 173-183. doi: 10.3934/dcdsb.2013.18.173 |
[19] |
E. Trofimchuk, Sergei Trofimchuk. Global stability in a regulated logistic growth model. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 461-468. doi: 10.3934/dcdsb.2005.5.461 |
[20] |
Maria do Rosário de Pinho, Filipa Nunes Nogueira. On application of optimal control to SEIR normalized models: Pros and cons. Mathematical Biosciences & Engineering, 2017, 14 (1) : 111-126. doi: 10.3934/mbe.2017008 |
2017 Impact Factor: 1.23
Tools
Metrics
Other articles
by authors
[Back to Top]