2015, 12(4): 859-877. doi: 10.3934/mbe.2015.12.859

Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function

1. 

School of Science and Technology, Zhejiang International Studies University, Hangzhou 310012, China

2. 

Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250

3. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China

Received  April 2014 Revised  December 2014 Published  April 2015

In this paper, we study an age-structured virus dynamics model with Beddington-DeAngelis infection function. An explicit formula for the basic reproductive number $\mathcal{R}_{0}$ of the model is obtained. We investigate the global behavior of the model in terms of $\mathcal{R}_{0}$: if $\mathcal{R}_{0}\leq1$, then the infection-free equilibrium is globally asymptotically stable, whereas if $\mathcal{R}_{0}>1$, then the infection equilibrium is globally asymptotically stable. Finally, some special cases, which reduce to some known HIV infection models studied by other researchers, are considered.
Citation: Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859
References:
[1]

C. L. Althaus and R. J. De Boer, Dynamics of immune escape during HIV/SIV infection,, PLoS Comput. Biol., 4 (2008). doi: 10.1371/journal.pcbi.1000103.

[2]

F. Brauer, Z. Shuai and P. van den Driessche, Dynamics of an age-of-infection cholera model,, Math. Biosci. Eng., 10 (2013), 1335. doi: 10.3934/mbe.2013.10.1335.

[3]

C. J. Browne and S. S. Pilyugin, Global analysis of age-structured within-host virus model,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1999. doi: 10.3934/dcdsb.2013.18.1999.

[4]

R. V. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of CD4$^+$ T-cells,, Math. Biosci., 165 (2000), 27. doi: 10.1016/S0025-5564(00)00006-7.

[5]

C. Cosner, D.L. DeAngelis, J. S. Ault and D. B. Olson, Effects of spatial grouping on the functional response of predators,, Theoret. Pop. Biol., 56 (1999), 65. doi: 10.1006/tpbi.1999.1414.

[6]

R. J. De Boer and A. S. Perelson, Target cell limited and immune control models of HIV infection: A comparison,, J. Theoret. Biol., 190 (1998), 201.

[7]

R. D. Demasse and A. Ducrot, An age-structured within-host model for multistrain malaria infections,, SIAM. J. Appl. Math., 73 (2013), 572. doi: 10.1137/120890351.

[8]

P. De Leenheer and H. L. Smith, Virus dynamics: A global analysis,, SIAM J. Appl. Math., 63 (2003), 1313. doi: 10.1137/S0036139902406905.

[9]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Mathematical Surveys and Monographs Vol 25, (1988).

[10]

J. K. Hale and P. Waltman, Persistence in infinite dimensional systems,, SIAM J. Math. Anal., 20 (1989), 388. doi: 10.1137/0520025.

[11]

G. Huang, W. Ma and Y. Takeuchi, Global properties for virus dynamics model with Beddington-DeAngelis functional response,, Appl. Math. Lett., 22 (2009), 1690. doi: 10.1016/j.aml.2009.06.004.

[12]

G. Huang, W. Ma and Y. Takeuchi, Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response,, Appl. Math. Lett., 24 (2011), 1199. doi: 10.1016/j.aml.2011.02.007.

[13]

G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infections,, SIAM J. Appl. Math., 70 (2010), 2693. doi: 10.1137/090780821.

[14]

G. Huang, X. Liu and Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model,, SIAM J. Appl. Math., 72 (2012), 25. doi: 10.1137/110826588.

[15]

G. Huisman and R. J. De Boer, A formal derivation of the "Beddington" functional response,, J. Theoret. Biol., 185 (1997), 389. doi: 10.1006/jtbi.1996.0318.

[16]

D. Kirschner and G. F. Webb, A model for treatment strategy in the chemotherapy of AIDS,, Bull. Math. Biol., 58 (1996), 367. doi: 10.1016/0092-8240(95)00345-2.

[17]

M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay,, Bull. Math. Biol., 72 (2010), 1492. doi: 10.1007/s11538-010-9503-x.

[18]

M. Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections,, SIAM J. Appl. Math., 70 (2010), 2434. doi: 10.1137/090779322.

[19]

P. Magal, Compact attractors for time-periodic age-structured population models,, Electron. J. Differential Equations, 65 (2001), 1.

[20]

P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model,, Appl. Anal., 89 (2010), 1109. doi: 10.1080/00036810903208122.

[21]

P. Magal and C. C. McCluskey, Two-group infection age model including an application to nosocomial infection,, SIAM J. Appl. Math., 73 (2013), 1058. doi: 10.1137/120882056.

[22]

P. Magal and H. R. Thieme, Eventual compactness for semiflows generated by nonlinear age-structured models,, Commun. Pure Appl. Anal., 3 (2004), 695. doi: 10.3934/cpaa.2004.3.695.

[23]

C. C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes,, Math. Biosci. Eng., 9 (2012), 819. doi: 10.3934/mbe.2012.9.819.

[24]

P. W. Nelson, M. A. Gilchrist, D. Coombs, J. M. Hyman and A. S. Perelson, An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells,, Math. Biosci. Eng., 1 (2004), 267. doi: 10.3934/mbe.2004.1.267.

[25]

A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses,, Science, 272 (1996), 74. doi: 10.1126/science.272.5258.74.

[26]

M. A. Nowak and R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology,, Oxford University Press, (2000).

[27]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo,, SIAM Rev., 41 (1999), 3. doi: 10.1137/S0036144598335107.

[28]

L. Rong, Z. Feng and A. S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy,, SIAM. J. Appl. Math., 67 (2007), 731. doi: 10.1137/060663945.

[29]

H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators,, Differential Integral Equations, 3 (1990), 1035.

show all references

References:
[1]

C. L. Althaus and R. J. De Boer, Dynamics of immune escape during HIV/SIV infection,, PLoS Comput. Biol., 4 (2008). doi: 10.1371/journal.pcbi.1000103.

[2]

F. Brauer, Z. Shuai and P. van den Driessche, Dynamics of an age-of-infection cholera model,, Math. Biosci. Eng., 10 (2013), 1335. doi: 10.3934/mbe.2013.10.1335.

[3]

C. J. Browne and S. S. Pilyugin, Global analysis of age-structured within-host virus model,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1999. doi: 10.3934/dcdsb.2013.18.1999.

[4]

R. V. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of CD4$^+$ T-cells,, Math. Biosci., 165 (2000), 27. doi: 10.1016/S0025-5564(00)00006-7.

[5]

C. Cosner, D.L. DeAngelis, J. S. Ault and D. B. Olson, Effects of spatial grouping on the functional response of predators,, Theoret. Pop. Biol., 56 (1999), 65. doi: 10.1006/tpbi.1999.1414.

[6]

R. J. De Boer and A. S. Perelson, Target cell limited and immune control models of HIV infection: A comparison,, J. Theoret. Biol., 190 (1998), 201.

[7]

R. D. Demasse and A. Ducrot, An age-structured within-host model for multistrain malaria infections,, SIAM. J. Appl. Math., 73 (2013), 572. doi: 10.1137/120890351.

[8]

P. De Leenheer and H. L. Smith, Virus dynamics: A global analysis,, SIAM J. Appl. Math., 63 (2003), 1313. doi: 10.1137/S0036139902406905.

[9]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Mathematical Surveys and Monographs Vol 25, (1988).

[10]

J. K. Hale and P. Waltman, Persistence in infinite dimensional systems,, SIAM J. Math. Anal., 20 (1989), 388. doi: 10.1137/0520025.

[11]

G. Huang, W. Ma and Y. Takeuchi, Global properties for virus dynamics model with Beddington-DeAngelis functional response,, Appl. Math. Lett., 22 (2009), 1690. doi: 10.1016/j.aml.2009.06.004.

[12]

G. Huang, W. Ma and Y. Takeuchi, Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response,, Appl. Math. Lett., 24 (2011), 1199. doi: 10.1016/j.aml.2011.02.007.

[13]

G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infections,, SIAM J. Appl. Math., 70 (2010), 2693. doi: 10.1137/090780821.

[14]

G. Huang, X. Liu and Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model,, SIAM J. Appl. Math., 72 (2012), 25. doi: 10.1137/110826588.

[15]

G. Huisman and R. J. De Boer, A formal derivation of the "Beddington" functional response,, J. Theoret. Biol., 185 (1997), 389. doi: 10.1006/jtbi.1996.0318.

[16]

D. Kirschner and G. F. Webb, A model for treatment strategy in the chemotherapy of AIDS,, Bull. Math. Biol., 58 (1996), 367. doi: 10.1016/0092-8240(95)00345-2.

[17]

M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay,, Bull. Math. Biol., 72 (2010), 1492. doi: 10.1007/s11538-010-9503-x.

[18]

M. Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections,, SIAM J. Appl. Math., 70 (2010), 2434. doi: 10.1137/090779322.

[19]

P. Magal, Compact attractors for time-periodic age-structured population models,, Electron. J. Differential Equations, 65 (2001), 1.

[20]

P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model,, Appl. Anal., 89 (2010), 1109. doi: 10.1080/00036810903208122.

[21]

P. Magal and C. C. McCluskey, Two-group infection age model including an application to nosocomial infection,, SIAM J. Appl. Math., 73 (2013), 1058. doi: 10.1137/120882056.

[22]

P. Magal and H. R. Thieme, Eventual compactness for semiflows generated by nonlinear age-structured models,, Commun. Pure Appl. Anal., 3 (2004), 695. doi: 10.3934/cpaa.2004.3.695.

[23]

C. C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes,, Math. Biosci. Eng., 9 (2012), 819. doi: 10.3934/mbe.2012.9.819.

[24]

P. W. Nelson, M. A. Gilchrist, D. Coombs, J. M. Hyman and A. S. Perelson, An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells,, Math. Biosci. Eng., 1 (2004), 267. doi: 10.3934/mbe.2004.1.267.

[25]

A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses,, Science, 272 (1996), 74. doi: 10.1126/science.272.5258.74.

[26]

M. A. Nowak and R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology,, Oxford University Press, (2000).

[27]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo,, SIAM Rev., 41 (1999), 3. doi: 10.1137/S0036144598335107.

[28]

L. Rong, Z. Feng and A. S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy,, SIAM. J. Appl. Math., 67 (2007), 731. doi: 10.1137/060663945.

[29]

H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators,, Differential Integral Equations, 3 (1990), 1035.

[1]

Yuming Chen, Junyuan Yang, Fengqin Zhang. The global stability of an SIRS model with infection age. Mathematical Biosciences & Engineering, 2014, 11 (3) : 449-469. doi: 10.3934/mbe.2014.11.449

[2]

Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva. Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1159-1186. doi: 10.3934/mbe.2017060

[3]

C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008

[4]

Cameron Browne. Immune response in virus model structured by cell infection-age. Mathematical Biosciences & Engineering, 2016, 13 (5) : 887-909. doi: 10.3934/mbe.2016022

[5]

Hossein Mohebbi, Azim Aminataei, Cameron J. Browne, Mohammad Reza Razvan. Hopf bifurcation of an age-structured virus infection model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 861-885. doi: 10.3934/dcdsb.2018046

[6]

Zhaohui Yuan, Xingfu Zou. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays. Mathematical Biosciences & Engineering, 2013, 10 (2) : 483-498. doi: 10.3934/mbe.2013.10.483

[7]

Hongying Shu, Lin Wang. Global stability and backward bifurcation of a general viral infection model with virus-driven proliferation of target cells. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1749-1768. doi: 10.3934/dcdsb.2014.19.1749

[8]

Fred Brauer, Zhisheng Shuai, P. van den Driessche. Dynamics of an age-of-infection cholera model. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1335-1349. doi: 10.3934/mbe.2013.10.1335

[9]

Jinliang Wang, Ran Zhang, Toshikazu Kuniya. A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences & Engineering, 2016, 13 (1) : 227-247. doi: 10.3934/mbe.2016.13.227

[10]

Jinliang Wang, Jiying Lang, Yuming Chen. Global dynamics of an age-structured HIV infection model incorporating latency and cell-to-cell transmission. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3721-3747. doi: 10.3934/dcdsb.2017186

[11]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[12]

Suxia Zhang, Xiaxia Xu. A mathematical model for hepatitis B with infection-age structure. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1329-1346. doi: 10.3934/dcdsb.2016.21.1329

[13]

Yu Yang, Yueping Dong, Yasuhiro Takeuchi. Global dynamics of a latent HIV infection model with general incidence function and multiple delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2018207

[14]

Cameron J. Browne, Sergei S. Pilyugin. Global analysis of age-structured within-host virus model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 1999-2017. doi: 10.3934/dcdsb.2013.18.1999

[15]

Steffen Eikenberry, Sarah Hews, John D. Nagy, Yang Kuang. The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth. Mathematical Biosciences & Engineering, 2009, 6 (2) : 283-299. doi: 10.3934/mbe.2009.6.283

[16]

C. Connell McCluskey. Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes. Mathematical Biosciences & Engineering, 2012, 9 (4) : 819-841. doi: 10.3934/mbe.2012.9.819

[17]

Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li. Global stability of an age-structured cholera model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 641-665. doi: 10.3934/mbe.2014.11.641

[18]

Cuicui Jiang, Wendi Wang. Complete classification of global dynamics of a virus model with immune responses. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1087-1103. doi: 10.3934/dcdsb.2014.19.1087

[19]

Cuicui Jiang, Kaifa Wang, Lijuan Song. Global dynamics of a delay virus model with recruitment and saturation effects of immune responses. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1233-1246. doi: 10.3934/mbe.2017063

[20]

Jinliang Wang, Xiu Dong. Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences & Engineering, 2018, 15 (3) : 569-594. doi: 10.3934/mbe.2018026

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]