• Previous Article
    Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach
  • MBE Home
  • This Issue
  • Next Article
    Delayed population models with Allee effects and exploitation
2015, 12(1): 71-81. doi: 10.3934/mbe.2015.12.71

Dynamics of competitive systems with a single common limiting factor

1. 

Faculty of Engineering, University of Miyazaki, Gakuen Kibanadai Nishi 1-1, Miyazaki 889-2192, Japan

Received  April 2014 Revised  October 2014 Published  December 2014

The concept of limiting factors (or regulating factors) succeeded in formulating the well-known principle of competitive exclusion. This paper shows that the concept of limiting factors is helpful not only to formulate the competitive exclusion principle, but also to obtain other ecological insights. To this end, by focusing on a specific community structure, we study the dynamics of Kolmogorov equations and show that it is possible to derive an ecologically insightful result only from the information about interactions between species and limiting factors. Furthermore, we find that the derived result is a generalization of the preceding work by Shigesada, Kawasaki, and Teramoto (1984), who examined a certain Lotka-Volterra equation in a different context.
Citation: Ryusuke Kon. Dynamics of competitive systems with a single common limiting factor. Mathematical Biosciences & Engineering, 2015, 12 (1) : 71-81. doi: 10.3934/mbe.2015.12.71
References:
[1]

R. A. Armstrong and R. McGehee, Coexistence of species competing for shared resources,, Theoretical Population Biology, 9 (1976), 317. doi: 10.1016/0040-5809(76)90051-4.

[2]

R. A. Armstrong and R. McGehee, Coexistence of two competitors on one resource,, Journal of Theoretical Biology, 56 (1976), 499. doi: 10.1016/S0022-5193(76)80089-6.

[3]

R. A. Armstrong and R. McGehee, Competitive exclusion,, The American Naturalist, 115 (1980), 151. doi: 10.1086/283553.

[4]

M. Hirsch and H. Smith, Monotone dynamical systems,, In A. Canada, II (2005), 239.

[5]

J. Hofbauer, An index theorem for dissipative semiflows,, Rocky Mountain J. Math., 20 (1990), 1017. doi: 10.1216/rmjm/1181073059.

[6]

J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems: Mathematical Aspects of Selection,, Cambridge University Press Cambridge, (1988).

[7]

J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics,, Cambridge University Press, (1998). doi: 10.1017/CBO9781139173179.

[8]

R. D. Holt, J. Grover and D. Tilman, Simple rules for interspecific dominance in systems with exploitative and apparent competition,, American Naturalist, 144 (1994), 741. doi: 10.1086/285705.

[9]

S. A. Levin, Community equilibria and stability, and an extension of the competitive exclusion principle,, The American Naturalist, 104 (1970), 413. doi: 10.1086/282676.

[10]

D. Logofet, Matrices and Graphs: Stability Problems in Mathematical Ecology,, CRC Press, (1993).

[11]

R. McGehee and R. A. Armstrong, Some mathematical problems concerning the ecological principle of competitive exclusion,, Journal of Differential Equations, 23 (1977), 30. doi: 10.1016/0022-0396(77)90135-8.

[12]

J. Moré and W. Rheinboldt, On P- and S-functions and related classes of n-dimensional nonlinear mappings,, Linear Algebra and its Applications, 6 (1973), 45. doi: 10.1016/0024-3795(73)90006-2.

[13]

J. J. Moré, Classes of functions and feasibility conditions in nonlinear complementarity problems,, Mathematical Programming, 6 (1974), 327. doi: 10.1007/BF01580248.

[14]

F. Scudo and J. Ziegler, Lecture Notes in Biomathematic, volume 22 of Lecture notes in Biomathematics,, Sprinter, (1978).

[15]

N. Shigesada, K. Kawasaki and E. Teramoto, The effects of interference competition on stability, structure and invasion of a multispecies system,, J. Math. Biol., 21 (1984), 97. doi: 10.1007/BF00277664.

[16]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs. American Mathematical Society, (1995).

[17]

Y. Takeuchi and N. Adachi, The existence of globally stable equilibria of ecosystems of the generalized Volterra type,, J. Math. Biol., 10 (1980), 401. doi: 10.1007/BF00276098.

[18]

Y. Takeuchi and N. Adachi, Existence of stable equilibrium point for dynamical systems of Volterra type,, J. Math. Anal. Appl., 79 (1981), 141. doi: 10.1016/0022-247X(81)90015-9.

[19]

Y. Takeuchi, N. Adachi and H. Tokumaru, Global stability of ecosystems of the generalized Volterra type,, Math. Biosci., 42 (1978), 119. doi: 10.1016/0025-5564(78)90010-X.

[20]

Y. Takeuchi, N. Adachi and H. Tokumaru, The stability of generalized Volterra equations,, J. Math. Anal. Appl., 62 (1978), 453. doi: 10.1016/0022-247X(78)90139-7.

show all references

References:
[1]

R. A. Armstrong and R. McGehee, Coexistence of species competing for shared resources,, Theoretical Population Biology, 9 (1976), 317. doi: 10.1016/0040-5809(76)90051-4.

[2]

R. A. Armstrong and R. McGehee, Coexistence of two competitors on one resource,, Journal of Theoretical Biology, 56 (1976), 499. doi: 10.1016/S0022-5193(76)80089-6.

[3]

R. A. Armstrong and R. McGehee, Competitive exclusion,, The American Naturalist, 115 (1980), 151. doi: 10.1086/283553.

[4]

M. Hirsch and H. Smith, Monotone dynamical systems,, In A. Canada, II (2005), 239.

[5]

J. Hofbauer, An index theorem for dissipative semiflows,, Rocky Mountain J. Math., 20 (1990), 1017. doi: 10.1216/rmjm/1181073059.

[6]

J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems: Mathematical Aspects of Selection,, Cambridge University Press Cambridge, (1988).

[7]

J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics,, Cambridge University Press, (1998). doi: 10.1017/CBO9781139173179.

[8]

R. D. Holt, J. Grover and D. Tilman, Simple rules for interspecific dominance in systems with exploitative and apparent competition,, American Naturalist, 144 (1994), 741. doi: 10.1086/285705.

[9]

S. A. Levin, Community equilibria and stability, and an extension of the competitive exclusion principle,, The American Naturalist, 104 (1970), 413. doi: 10.1086/282676.

[10]

D. Logofet, Matrices and Graphs: Stability Problems in Mathematical Ecology,, CRC Press, (1993).

[11]

R. McGehee and R. A. Armstrong, Some mathematical problems concerning the ecological principle of competitive exclusion,, Journal of Differential Equations, 23 (1977), 30. doi: 10.1016/0022-0396(77)90135-8.

[12]

J. Moré and W. Rheinboldt, On P- and S-functions and related classes of n-dimensional nonlinear mappings,, Linear Algebra and its Applications, 6 (1973), 45. doi: 10.1016/0024-3795(73)90006-2.

[13]

J. J. Moré, Classes of functions and feasibility conditions in nonlinear complementarity problems,, Mathematical Programming, 6 (1974), 327. doi: 10.1007/BF01580248.

[14]

F. Scudo and J. Ziegler, Lecture Notes in Biomathematic, volume 22 of Lecture notes in Biomathematics,, Sprinter, (1978).

[15]

N. Shigesada, K. Kawasaki and E. Teramoto, The effects of interference competition on stability, structure and invasion of a multispecies system,, J. Math. Biol., 21 (1984), 97. doi: 10.1007/BF00277664.

[16]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs. American Mathematical Society, (1995).

[17]

Y. Takeuchi and N. Adachi, The existence of globally stable equilibria of ecosystems of the generalized Volterra type,, J. Math. Biol., 10 (1980), 401. doi: 10.1007/BF00276098.

[18]

Y. Takeuchi and N. Adachi, Existence of stable equilibrium point for dynamical systems of Volterra type,, J. Math. Anal. Appl., 79 (1981), 141. doi: 10.1016/0022-247X(81)90015-9.

[19]

Y. Takeuchi, N. Adachi and H. Tokumaru, Global stability of ecosystems of the generalized Volterra type,, Math. Biosci., 42 (1978), 119. doi: 10.1016/0025-5564(78)90010-X.

[20]

Y. Takeuchi, N. Adachi and H. Tokumaru, The stability of generalized Volterra equations,, J. Math. Anal. Appl., 62 (1978), 453. doi: 10.1016/0022-247X(78)90139-7.

[1]

Juan Luis García Guirao, Marek Lampart. Transitivity of a Lotka-Volterra map. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 75-82. doi: 10.3934/dcdsb.2008.9.75

[2]

Xiao He, Sining Zheng. Protection zone in a modified Lotka-Volterra model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2027-2038. doi: 10.3934/dcdsb.2015.20.2027

[3]

Giuseppina Barletta, Roberto Livrea, Nikolaos S. Papageorgiou. A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1075-1086. doi: 10.3934/cpaa.2014.13.1075

[4]

Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953

[5]

Linping Peng, Zhaosheng Feng, Changjian Liu. Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4807-4826. doi: 10.3934/dcds.2014.34.4807

[6]

Suqing Lin, Zhengyi Lu. Permanence for two-species Lotka-Volterra systems with delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 137-144. doi: 10.3934/mbe.2006.3.137

[7]

Yukio Kan-On. Global bifurcation structure of stationary solutions for a Lotka-Volterra competition model. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 147-162. doi: 10.3934/dcds.2002.8.147

[8]

Xiaoli Liu, Dongmei Xiao. Bifurcations in a discrete time Lotka-Volterra predator-prey system. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 559-572. doi: 10.3934/dcdsb.2006.6.559

[9]

Guichen Lu, Zhengyi Lu. Permanence for two-species Lotka-Volterra cooperative systems with delays. Mathematical Biosciences & Engineering, 2008, 5 (3) : 477-484. doi: 10.3934/mbe.2008.5.477

[10]

Jian Fang, Jianhong Wu. Monotone traveling waves for delayed Lotka-Volterra competition systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3043-3058. doi: 10.3934/dcds.2012.32.3043

[11]

Fuke Wu, Yangzi Hu. Stochastic Lotka-Volterra system with unbounded distributed delay. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 275-288. doi: 10.3934/dcdsb.2010.14.275

[12]

Guo Lin, Wan-Tong Li, Shigui Ruan. Monostable wavefronts in cooperative Lotka-Volterra systems with nonlocal delays. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 1-23. doi: 10.3934/dcds.2011.31.1

[13]

Meng Liu, Ke Wang. Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2495-2522. doi: 10.3934/dcds.2013.33.2495

[14]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[15]

Qi Wang, Chunyi Gai, Jingda Yan. Qualitative analysis of a Lotka-Volterra competition system with advection. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1239-1284. doi: 10.3934/dcds.2015.35.1239

[16]

Mats Gyllenberg, Ping Yan. On the number of limit cycles for three dimensional Lotka-Volterra systems. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 347-352. doi: 10.3934/dcdsb.2009.11.347

[17]

Anthony W. Leung, Xiaojie Hou, Wei Feng. Traveling wave solutions for Lotka-Volterra system re-visited. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 171-196. doi: 10.3934/dcdsb.2011.15.171

[18]

Rui Wang, Xiaoyue Li, Denis S. Mukama. On stochastic multi-group Lotka-Volterra ecosystems with regime switching. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3499-3528. doi: 10.3934/dcdsb.2017177

[19]

Ting-Hui Yang, Weinian Zhang, Kaijen Cheng. Global dynamics of three species omnivory models with Lotka-Volterra interaction. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2867-2881. doi: 10.3934/dcdsb.2016077

[20]

Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]