2015, 12(2): 311-335. doi: 10.3934/mbe.2015.12.311

Stability and optimization in structured population models on graphs

1. 

INdAM Unit, University of Brescia, Brescia

2. 

Department of Mathematics and Applications, University of Milano-Bicocca, Via R. Cozzi, 53, 20125 Milano

Received  April 2014 Revised  July 2014 Published  December 2014

We prove existence and uniqueness of solutions, continuous dependence from the initial datum and stability with respect to the boundary condition in a class of initial--boundary value problems for systems of balance laws. The particular choice of the boundary condition allows to comprehend models with very different structures. In particular, we consider a juvenile-adult model, the problem of the optimal mating ratio and a model for the optimal management of biological resources. The stability result obtained allows to tackle various optimal management/control problems, providing sufficient conditions for the existence of optimal choices/controls.
Citation: Rinaldo M. Colombo, Mauro Garavello. Stability and optimization in structured population models on graphs. Mathematical Biosciences & Engineering, 2015, 12 (2) : 311-335. doi: 10.3934/mbe.2015.12.311
References:
[1]

A. S. Ackleh and K. Deng, A nonautonomous juvenile-adult model: Well-posedness and long-time behavior via a comparison principle,, SIAM J. Appl. Math., 69 (2009), 1644. doi: 10.1137/080723673.

[2]

A. S. Ackleh, K. Deng and X. Yang, Sensitivity analysis for a structured juvenile-adult model,, Comput. Math. Appl., 64 (2012), 190. doi: 10.1016/j.camwa.2011.12.053.

[3]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems,, Oxford Mathematical Monographs, (2000).

[4]

C. Bardos, A. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions,, Comm. Partial Differential Equations, 4 (1979), 1017. doi: 10.1080/03605307908820117.

[5]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology,, Second edition, (2012). doi: 10.1007/978-1-4614-1686-9.

[6]

A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,, Oxford Lecture Series in Mathematics and its Applications, (2000).

[7]

J. A. Carrillo, S. Cuadrado and B. Perthame, Adaptive dynamics via Hamilton-Jacobi approach and entropy methods for a juvenile-adult model,, Math. Biosci., 205 (2007), 137. doi: 10.1016/j.mbs.2006.09.012.

[8]

R. M. Colombo and G. Guerra, On general balance laws with boundary,, J. Differential Equations, 248 (2010), 1017. doi: 10.1016/j.jde.2009.12.002.

[9]

R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals,, SIAM J. Control Optim., 48 (2009), 2032. doi: 10.1137/080716372.

[10]

M. Garavello and B. Piccoli, Traffic Flow on Networks,, AIMS Series on Applied Mathematics, (2006).

[11]

N. Keyfitz, The mathematics of sex and marriage,, in Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, (1972), 89.

[12]

S. N. Kružhkov, First order quasilinear equations with several independent variables,, Mat. Sb. (N.S.), 81 (1970), 228.

[13]

R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems,, Cambridge Texts in Applied Mathematics, (2002). doi: 10.1017/CBO9780511791253.

[14]

P. Manfredi, Logistic effects in the two-sex model with "harmonic mean" fertility function,, Genus, 49 (1993), 43.

[15]

B. Perthame, Transport Equations in Biology,, Frontiers in Mathematics. Birkhäuser Verlag, (2007).

[16]

R. Schoen, The harmonic mean as the basis of a realistic two-sex marriage model,, Demography, 18 (1981), 201. doi: 10.2307/2061093.

[17]

R. Schoen, Relationships in a simple harmonic mean two-sex fertility model,, Journal of Mathematical Biology, 18 (1983), 201. doi: 10.1007/BF00276087.

[18]

R. Schoen, Modeling Multigroup Populations,, Springer, (1988). doi: 10.1007/978-1-4899-2055-3.

[19]

D. Serre, Systems of Conservation Laws. 2. Geometric Structures, Oscillations, and Initial-Boundary Value Problems,, Translated from the 1996 French original by I. N. Sneddon, (1996).

[20]

A. Sundelof and P. Aberg, Birth functions in stage structured two-sex models,, Ecological Modeling, 193 (2006), 787. doi: 10.1016/j.ecolmodel.2005.08.040.

show all references

References:
[1]

A. S. Ackleh and K. Deng, A nonautonomous juvenile-adult model: Well-posedness and long-time behavior via a comparison principle,, SIAM J. Appl. Math., 69 (2009), 1644. doi: 10.1137/080723673.

[2]

A. S. Ackleh, K. Deng and X. Yang, Sensitivity analysis for a structured juvenile-adult model,, Comput. Math. Appl., 64 (2012), 190. doi: 10.1016/j.camwa.2011.12.053.

[3]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems,, Oxford Mathematical Monographs, (2000).

[4]

C. Bardos, A. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions,, Comm. Partial Differential Equations, 4 (1979), 1017. doi: 10.1080/03605307908820117.

[5]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology,, Second edition, (2012). doi: 10.1007/978-1-4614-1686-9.

[6]

A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,, Oxford Lecture Series in Mathematics and its Applications, (2000).

[7]

J. A. Carrillo, S. Cuadrado and B. Perthame, Adaptive dynamics via Hamilton-Jacobi approach and entropy methods for a juvenile-adult model,, Math. Biosci., 205 (2007), 137. doi: 10.1016/j.mbs.2006.09.012.

[8]

R. M. Colombo and G. Guerra, On general balance laws with boundary,, J. Differential Equations, 248 (2010), 1017. doi: 10.1016/j.jde.2009.12.002.

[9]

R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals,, SIAM J. Control Optim., 48 (2009), 2032. doi: 10.1137/080716372.

[10]

M. Garavello and B. Piccoli, Traffic Flow on Networks,, AIMS Series on Applied Mathematics, (2006).

[11]

N. Keyfitz, The mathematics of sex and marriage,, in Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, (1972), 89.

[12]

S. N. Kružhkov, First order quasilinear equations with several independent variables,, Mat. Sb. (N.S.), 81 (1970), 228.

[13]

R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems,, Cambridge Texts in Applied Mathematics, (2002). doi: 10.1017/CBO9780511791253.

[14]

P. Manfredi, Logistic effects in the two-sex model with "harmonic mean" fertility function,, Genus, 49 (1993), 43.

[15]

B. Perthame, Transport Equations in Biology,, Frontiers in Mathematics. Birkhäuser Verlag, (2007).

[16]

R. Schoen, The harmonic mean as the basis of a realistic two-sex marriage model,, Demography, 18 (1981), 201. doi: 10.2307/2061093.

[17]

R. Schoen, Relationships in a simple harmonic mean two-sex fertility model,, Journal of Mathematical Biology, 18 (1983), 201. doi: 10.1007/BF00276087.

[18]

R. Schoen, Modeling Multigroup Populations,, Springer, (1988). doi: 10.1007/978-1-4899-2055-3.

[19]

D. Serre, Systems of Conservation Laws. 2. Geometric Structures, Oscillations, and Initial-Boundary Value Problems,, Translated from the 1996 French original by I. N. Sneddon, (1996).

[20]

A. Sundelof and P. Aberg, Birth functions in stage structured two-sex models,, Ecological Modeling, 193 (2006), 787. doi: 10.1016/j.ecolmodel.2005.08.040.

[1]

Azmy S. Ackleh, Keng Deng. Stability of a delay equation arising from a juvenile-adult model. Mathematical Biosciences & Engineering, 2010, 7 (4) : 729-737. doi: 10.3934/mbe.2010.7.729

[2]

J. M. Cushing, Simon Maccracken Stump. Darwinian dynamics of a juvenile-adult model. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1017-1044. doi: 10.3934/mbe.2013.10.1017

[3]

Xianlong Fu, Dongmei Zhu. Stability analysis for a size-structured juvenile-adult population model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 391-417. doi: 10.3934/dcdsb.2014.19.391

[4]

Azmy S. Ackleh, Keng Deng, Qihua Huang. Difference approximation for an amphibian juvenile-adult dispersal mode. Conference Publications, 2011, 2011 (Special) : 1-12. doi: 10.3934/proc.2011.2011.1

[5]

József Z. Farkas, Thomas Hagen. Asymptotic behavior of size-structured populations via juvenile-adult interaction. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 249-266. doi: 10.3934/dcdsb.2008.9.249

[6]

Constantine M. Dafermos. Hyperbolic balance laws with relaxation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4271-4285. doi: 10.3934/dcds.2016.36.4271

[7]

Graziano Crasta, Benedetto Piccoli. Viscosity solutions and uniqueness for systems of inhomogeneous balance laws. Discrete & Continuous Dynamical Systems - A, 1997, 3 (4) : 477-502. doi: 10.3934/dcds.1997.3.477

[8]

Rinaldo M. Colombo, Graziano Guerra. Hyperbolic balance laws with a dissipative non local source. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1077-1090. doi: 10.3934/cpaa.2008.7.1077

[9]

Laura Caravenna. Regularity estimates for continuous solutions of α-convex balance laws. Communications on Pure & Applied Analysis, 2017, 16 (2) : 629-644. doi: 10.3934/cpaa.2017031

[10]

Alessia Marigo, Benedetto Piccoli. A model for biological dynamic networks. Networks & Heterogeneous Media, 2011, 6 (4) : 647-663. doi: 10.3934/nhm.2011.6.647

[11]

Ryszard Rudnicki, Radoslaw Wieczorek. Does assortative mating lead to a polymorphic population? A toy model justification. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 459-472. doi: 10.3934/dcdsb.2018031

[12]

Yinggao Zhou, Jianhong Wu, Min Wu. Optimal isolation strategies of emerging infectious diseases with limited resources. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1691-1701. doi: 10.3934/mbe.2013.10.1691

[13]

Yanni Zeng. LP decay for general hyperbolic-parabolic systems of balance laws. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 363-396. doi: 10.3934/dcds.2018018

[14]

Piotr Gwiazda, Piotr Orlinski, Agnieszka Ulikowska. Finite range method of approximation for balance laws in measure spaces. Kinetic & Related Models, 2017, 10 (3) : 669-688. doi: 10.3934/krm.2017027

[15]

Julia Amador, Mariajesus Lopez-Herrero. Cumulative and maximum epidemic sizes for a nonlinear SEIR stochastic model with limited resources. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-15. doi: 10.3934/dcdsb.2017211

[16]

Andrew J. Whittle, Suzanne Lenhart, Louis J. Gross. Optimal control for management of an invasive plant species. Mathematical Biosciences & Engineering, 2007, 4 (1) : 101-112. doi: 10.3934/mbe.2007.4.101

[17]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[18]

Mohammad El Smaily, François Hamel, Lionel Roques. Homogenization and influence of fragmentation in a biological invasion model. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 321-342. doi: 10.3934/dcds.2009.25.321

[19]

Arturo Hidalgo, Lourdes Tello. On a climatological energy balance model with continents distribution. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1503-1519. doi: 10.3934/dcds.2015.35.1503

[20]

Oleg U. Kirnasovsky, Yuri Kogan, Zvia Agur. Resilience in stem cell renewal: development of the Agur--Daniel--Ginosar model. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 129-148. doi: 10.3934/dcdsb.2008.10.129

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]