# American Institute of Mathematical Sciences

• Previous Article
Theoretical assessment of the relative incidences of sensitive and resistant tuberculosis epidemic in presence of drug treatment
• MBE Home
• This Issue
• Next Article
Stochastic dynamics of SIRS epidemic models with random perturbation
2014, 11(4): 995-1001. doi: 10.3934/mbe.2014.11.995

## A note on global stability for malaria infections model with latencies

 1 School of Mathematical Science, Heilongjiang University, Harbin 150080, China, China 2 Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba Meguro-ku, Tokyo 153-8914

Received  June 2013 Revised  October 2013 Published  March 2014

A recent paper [Y. Xiao and X. Zou, On latencies in malaria infections and their impact on the disease dynamics, Math. Biosci. Eng., 10(2) 2013, 463-481.] presented a mathematical model to investigate the spread of malaria. The model is obtained by modifying the classic Ross-Macdonald model by incorporating latencies both for human beings and female mosquitoes. It is realistic to consider the new model with latencies differing from individuals to individuals. However, the analysis in that paper did not resolve the global malaria disease dynamics when $\Re_0>1$. The authors just showed global stability of endemic equilibrium for two specific probability functions: exponential functions and step functions. Here, we show that if there is no recovery, the endemic equilibrium is globally stable for $\Re_0>1$ without other additional conditions. The approach used here, is to use a direct Lyapunov functional and Lyapunov- LaSalle invariance principle.
Citation: Jinliang Wang, Jingmei Pang, Toshikazu Kuniya. A note on global stability for malaria infections model with latencies. Mathematical Biosciences & Engineering, 2014, 11 (4) : 995-1001. doi: 10.3934/mbe.2014.11.995
##### References:
 [1] F. V. Atkinson and J. R. Haddock, On determining phase spaces for functional differential equations,, Funkcial. Ekvac., 31 (1988), 331. [2] C. Castillo-Chavez and H. R. Thieme, Asymptotically autonomous epidemic models,, in Mathematical Population Dynamics: Analysis of Heterogeneity, (1995), 33. [3] J. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, vol.99., Applied Mathematical Science, (1993). [4] J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay,, Funkcial. Ekvac., 21 (1978), 11. [5] W. M. Hirsch, H. Hanisch and J. P. Gabriel, Differential equation models of some parasitic infections: Methods for the study of asymptotic behavior,, Comm. Pure Appl. Math., 38 (1985), 733. doi: 10.1002/cpa.3160380607. [6] G. Huang and Y. Takeuchi, Global analysis on delay epidemiological dynamic models with nonlinear incidence,, J. Math. Biol., 63 (2011), 125. doi: 10.1007/s00285-010-0368-2. [7] G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for Delay differential equations model for viral infections,, SIAM J. Appl. Math., 70 (2010), 2693. doi: 10.1137/090780821. [8] A. Korobeinikov and P. K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence,, Math. Biosci. Eng., 1 (2004), 57. doi: 10.3934/mbe.2004.1.57. [9] A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission,, Bull. Math. Biol., 68 (2006), 615. doi: 10.1007/s11538-005-9037-9. [10] J. P. Lasalle, The Stability of Dynamical Systems,, Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, (1976). [11] R. K. Miller, Nonlinear Volterra Integral Equations,, W. A. Benjamin Inc., (1971). [12] C. C. McCluskey, Complete global stability for an SIR epidemic model with delaydistributed or discrete,, Nonlinear Anal. RWA., 11 (2010), 55. doi: 10.1016/j.nonrwa.2008.10.014. [13] C. C. McCluskey, Global stability for an SIER epidemiological model with varying infectivity and infinite delay,, Math. Biosci. Eng., 6 (2009), 603. doi: 10.3934/mbe.2009.6.603. [14] H. R. Thieme, Mathematics In Population Biology,, Princeton University Press, (2003). [15] J. Wang, G. Huang and Y. Takeuchi, Global asymptotic stability for HIV-1 dynamics with two distributed delays,, Math. Med. Biol., 29 (2012), 283. doi: 10.1093/imammb/dqr009. [16] P. van den Driessche, L. Wang and X. Zou, Modeling diseases with latency and relapse,, Math. Biosci. Eng., 4 (2007), 205. doi: 10.3934/mbe.2007.4.205. [17] Y. Xiao and X. Zou, On latencies in malaria infections and their impact on the disease dynamics,, Math. Biosci. Eng., 10 (2013), 463. doi: 10.3934/mbe.2013.10.463.

show all references

##### References:
 [1] F. V. Atkinson and J. R. Haddock, On determining phase spaces for functional differential equations,, Funkcial. Ekvac., 31 (1988), 331. [2] C. Castillo-Chavez and H. R. Thieme, Asymptotically autonomous epidemic models,, in Mathematical Population Dynamics: Analysis of Heterogeneity, (1995), 33. [3] J. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, vol.99., Applied Mathematical Science, (1993). [4] J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay,, Funkcial. Ekvac., 21 (1978), 11. [5] W. M. Hirsch, H. Hanisch and J. P. Gabriel, Differential equation models of some parasitic infections: Methods for the study of asymptotic behavior,, Comm. Pure Appl. Math., 38 (1985), 733. doi: 10.1002/cpa.3160380607. [6] G. Huang and Y. Takeuchi, Global analysis on delay epidemiological dynamic models with nonlinear incidence,, J. Math. Biol., 63 (2011), 125. doi: 10.1007/s00285-010-0368-2. [7] G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for Delay differential equations model for viral infections,, SIAM J. Appl. Math., 70 (2010), 2693. doi: 10.1137/090780821. [8] A. Korobeinikov and P. K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence,, Math. Biosci. Eng., 1 (2004), 57. doi: 10.3934/mbe.2004.1.57. [9] A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission,, Bull. Math. Biol., 68 (2006), 615. doi: 10.1007/s11538-005-9037-9. [10] J. P. Lasalle, The Stability of Dynamical Systems,, Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, (1976). [11] R. K. Miller, Nonlinear Volterra Integral Equations,, W. A. Benjamin Inc., (1971). [12] C. C. McCluskey, Complete global stability for an SIR epidemic model with delaydistributed or discrete,, Nonlinear Anal. RWA., 11 (2010), 55. doi: 10.1016/j.nonrwa.2008.10.014. [13] C. C. McCluskey, Global stability for an SIER epidemiological model with varying infectivity and infinite delay,, Math. Biosci. Eng., 6 (2009), 603. doi: 10.3934/mbe.2009.6.603. [14] H. R. Thieme, Mathematics In Population Biology,, Princeton University Press, (2003). [15] J. Wang, G. Huang and Y. Takeuchi, Global asymptotic stability for HIV-1 dynamics with two distributed delays,, Math. Med. Biol., 29 (2012), 283. doi: 10.1093/imammb/dqr009. [16] P. van den Driessche, L. Wang and X. Zou, Modeling diseases with latency and relapse,, Math. Biosci. Eng., 4 (2007), 205. doi: 10.3934/mbe.2007.4.205. [17] Y. Xiao and X. Zou, On latencies in malaria infections and their impact on the disease dynamics,, Math. Biosci. Eng., 10 (2013), 463. doi: 10.3934/mbe.2013.10.463.
 [1] Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi. Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences & Engineering, 2012, 9 (2) : 297-312. doi: 10.3934/mbe.2012.9.297 [2] Jinliang Wang, Jiying Lang, Yuming Chen. Global dynamics of an age-structured HIV infection model incorporating latency and cell-to-cell transmission. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3721-3747. doi: 10.3934/dcdsb.2017186 [3] Yuming Chen, Junyuan Yang, Fengqin Zhang. The global stability of an SIRS model with infection age. Mathematical Biosciences & Engineering, 2014, 11 (3) : 449-469. doi: 10.3934/mbe.2014.11.449 [4] Shanjing Ren. Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1337-1360. doi: 10.3934/mbe.2017069 [5] Yoshiaki Muroya, Yoichi Enatsu, Huaixing Li. A note on the global stability of an SEIR epidemic model with constant latency time and infectious period. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 173-183. doi: 10.3934/dcdsb.2013.18.173 [6] Jinliang Wang, Xiu Dong. Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences & Engineering, 2018, 15 (3) : 569-594. doi: 10.3934/mbe.2018026 [7] Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689 [8] Jinliang Wang, Jiying Lang, Xianning Liu. Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3215-3233. doi: 10.3934/dcdsb.2015.20.3215 [9] Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525-536. doi: 10.3934/mbe.2015.12.525 [10] Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971 [11] Zindoga Mukandavire, Abba B. Gumel, Winston Garira, Jean Michel Tchuenche. Mathematical analysis of a model for HIV-malaria co-infection. Mathematical Biosciences & Engineering, 2009, 6 (2) : 333-362. doi: 10.3934/mbe.2009.6.333 [12] Kazeem Oare Okosun, Robert Smith?. Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences & Engineering, 2017, 14 (2) : 377-405. doi: 10.3934/mbe.2017024 [13] Yilong Li, Shigui Ruan, Dongmei Xiao. The Within-Host dynamics of malaria infection with immune response. Mathematical Biosciences & Engineering, 2011, 8 (4) : 999-1018. doi: 10.3934/mbe.2011.8.999 [14] Kai Liu, Zhi Li. Global attracting set, exponential decay and stability in distribution of neutral SPDEs driven by additive $\alpha$-stable processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3551-3573. doi: 10.3934/dcdsb.2016110 [15] Yoshiaki Muroya, Toshikazu Kuniya, Yoichi Enatsu. Global stability of a delayed multi-group SIRS epidemic model with nonlinear incidence rates and relapse of infection. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3057-3091. doi: 10.3934/dcdsb.2015.20.3057 [16] Hongying Shu, Lin Wang. Global stability and backward bifurcation of a general viral infection model with virus-driven proliferation of target cells. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1749-1768. doi: 10.3934/dcdsb.2014.19.1749 [17] Jinliang Wang, Lijuan Guan. Global stability for a HIV-1 infection model with cell-mediated immune response and intracellular delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 297-302. doi: 10.3934/dcdsb.2012.17.297 [18] Antoine Perasso. Global stability and uniform persistence for an infection load-structured SI model with exponential growth velocity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 15-32. doi: 10.3934/cpaa.2019002 [19] Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859 [20] Yu Ji, Lan Liu. Global stability of a delayed viral infection model with nonlinear immune response and general incidence rate. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 133-149. doi: 10.3934/dcdsb.2016.21.133

2017 Impact Factor: 1.23