• Previous Article
    On the estimation of sequestered infected erythrocytes in Plasmodium falciparum malaria patients
  • MBE Home
  • This Issue
  • Next Article
    Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate
2014, 11(4): 761-784. doi: 10.3934/mbe.2014.11.761

A SEIR model for control of infectious diseases with constraints

1. 

Faculdade de Engenharia da Universidade do Porto, DEEC and ISR-Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal, Portugal, Portugal

Received  April 2013 Revised  December 2013 Published  March 2014

Optimal control can be of help to test and compare different vaccination strategies of a certain disease. In this paper we propose the introduction of constraints involving state variables on an optimal control problem applied to a compartmental SEIR (Susceptible. Exposed, Infectious and Recovered) model. We study the solution of such problems when mixed state control constraints are used to impose upper bounds on the available vaccines at each instant of time. We also explore the possibility of imposing upper bounds on the number of susceptible individuals with and without limitations on the number of vaccines available. In the case of mere mixed constraints a numerical and analytical study is conducted while in the other two situations only numerical results are presented.
Citation: M. H. A. Biswas, L. T. Paiva, MdR de Pinho. A SEIR model for control of infectious diseases with constraints. Mathematical Biosciences & Engineering, 2014, 11 (4) : 761-784. doi: 10.3934/mbe.2014.11.761
References:
[1]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology,, Springer-Verlag. New York, (2001).

[2]

F. Clarke, Optimization and Nonsmooth Analysis,, John Wiley, (1983).

[3]

F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control,, Springer-Verlag, (2013). doi: 10.1007/978-1-4471-4820-3.

[4]

F. Clarke and MdR de Pinho, Optimal control problems with mixed constraints,, SIAM J. Control Optim., 48 (2010), 4500. doi: 10.1137/090757642.

[5]

M. d. R. de Pinho, M. M. Ferreira, U. Ledzewicz and H. Schaettler, A model for cancer chemotherapy with state-space constraints,, Nonlinear Analysis, 63 (2005).

[6]

M. d. R. de Pinho, P. Loewen and G. N. Silva, A weak maximum principle for optimal control problems with nonsmooth mixed constraints,, Set-Valued and Variational Analysis, 17 (2009), 203. doi: 10.1007/s11228-009-0108-1.

[7]

E. Demirci, A. Unal and N. Ozalp, A fractional order seir model with density dependent death rate,, MdR de Pinho, 40 (2011), 287.

[8]

P. Falugi, E. Kerrigan and E. van Wyk, Imperial College London Optimal Control Software User Guide (ICLOCS),, Department of Electrical and Electronic Engineering, (2010).

[9]

R. F. Hartl, S. P. Sethi and R. G. Vickson, A survey of the maximum principles for optimal control problems with state constraints,, SIAM Review, 37 (1995), 181. doi: 10.1137/1037043.

[10]

M. R. Hestenes, Calculus of Variations and Optimal Control Theory,, $2^{nd}$ Edition (405 pages), (1980).

[11]

H. W. Hethcote, The basic epidemiology models: models, expressions for $R_0$, parameter estimation, and applications,, In Mathematical Understanding of Infectious Disease Dynamics (S. Ma and Y. Xia, (2008), 1. doi: 10.1142/9789812834836_0001.

[12]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics,, Bulletin of Mathematical Biology, 53 (1991), 35.

[13]

H. Maurer and S. Pickenhain, Second order sufficient conditions for optimal control problems with mixed control-state constraints,, J. Optim. Theory Appl., 86 (1995), 649. doi: 10.1007/BF02192163.

[14]

Helmut Maurer and H.J. Oberle, Second order sufficient conditions for optimal control problems with free final time: The Riccati approach,, SIAM J. Control Optm., 41 (2002), 380. doi: 10.1137/S0363012900377419.

[15]

N. P. Osmolovskii and H. Maurer, Applications to Regular and Bang-Bang Control: Second-Order Necessary And Sufficient Optimality Conditions In Calculus Of Variations And Optimal Control,, SIAM Advances in Design and Control, 24 (2012). doi: 10.1137/1.9781611972368.

[16]

D. S. Naidu, T. Fernando and K. R. Fister, Optimal control in diabetes,, Optim. Control Appl. Meth., 32 (2011), 181. doi: 10.1002/oca.990.

[17]

R.M. Neilan and S. Lenhart, An introduction to optimal control with an application in disease modeling,, DIMACS Series in Discrete Mathematics, 75 (2010), 67.

[18]

L.T. Paiva, Optimal Control in Constrained and Hybrid Nonlinear Systems,, Project Report, (2013).

[19]

O. Prosper, O. Saucedo, D. Thompson, G. T. Garcia, X. Wang and C. Castillo-Chavez, Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza,, Mathematical Biosciences and Engineering, 8 (2011), 141. doi: 10.3934/mbe.2011.8.141.

[20]

P. Shi and L. Dong, Dynamical models for infectious diseases with varying population size and vaccinations,, Journal of Applied Mathematics, 2012 (2012), 1. doi: 10.1155/2012/824192.

[21]

H. Schäettler and U. Ledzewicz, Geometric Optimal Control. Theory, Methods and Examples,, Springer, (2012). doi: 10.1007/978-1-4614-3834-2.

[22]

C. Sun and Y. H. Hsieh, Global analysis of an SEIR model with varying population size and vaccination,, Applied Mathematical Modelling, 34 (2010), 2685. doi: 10.1016/j.apm.2009.12.005.

[23]

R. Vinter, Optimal Control,, Birkhäuser, (2000).

[24]

A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,, Mathematical Programming, 106 (2006), 25. doi: 10.1007/s10107-004-0559-y.

show all references

References:
[1]

F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology,, Springer-Verlag. New York, (2001).

[2]

F. Clarke, Optimization and Nonsmooth Analysis,, John Wiley, (1983).

[3]

F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control,, Springer-Verlag, (2013). doi: 10.1007/978-1-4471-4820-3.

[4]

F. Clarke and MdR de Pinho, Optimal control problems with mixed constraints,, SIAM J. Control Optim., 48 (2010), 4500. doi: 10.1137/090757642.

[5]

M. d. R. de Pinho, M. M. Ferreira, U. Ledzewicz and H. Schaettler, A model for cancer chemotherapy with state-space constraints,, Nonlinear Analysis, 63 (2005).

[6]

M. d. R. de Pinho, P. Loewen and G. N. Silva, A weak maximum principle for optimal control problems with nonsmooth mixed constraints,, Set-Valued and Variational Analysis, 17 (2009), 203. doi: 10.1007/s11228-009-0108-1.

[7]

E. Demirci, A. Unal and N. Ozalp, A fractional order seir model with density dependent death rate,, MdR de Pinho, 40 (2011), 287.

[8]

P. Falugi, E. Kerrigan and E. van Wyk, Imperial College London Optimal Control Software User Guide (ICLOCS),, Department of Electrical and Electronic Engineering, (2010).

[9]

R. F. Hartl, S. P. Sethi and R. G. Vickson, A survey of the maximum principles for optimal control problems with state constraints,, SIAM Review, 37 (1995), 181. doi: 10.1137/1037043.

[10]

M. R. Hestenes, Calculus of Variations and Optimal Control Theory,, $2^{nd}$ Edition (405 pages), (1980).

[11]

H. W. Hethcote, The basic epidemiology models: models, expressions for $R_0$, parameter estimation, and applications,, In Mathematical Understanding of Infectious Disease Dynamics (S. Ma and Y. Xia, (2008), 1. doi: 10.1142/9789812834836_0001.

[12]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics,, Bulletin of Mathematical Biology, 53 (1991), 35.

[13]

H. Maurer and S. Pickenhain, Second order sufficient conditions for optimal control problems with mixed control-state constraints,, J. Optim. Theory Appl., 86 (1995), 649. doi: 10.1007/BF02192163.

[14]

Helmut Maurer and H.J. Oberle, Second order sufficient conditions for optimal control problems with free final time: The Riccati approach,, SIAM J. Control Optm., 41 (2002), 380. doi: 10.1137/S0363012900377419.

[15]

N. P. Osmolovskii and H. Maurer, Applications to Regular and Bang-Bang Control: Second-Order Necessary And Sufficient Optimality Conditions In Calculus Of Variations And Optimal Control,, SIAM Advances in Design and Control, 24 (2012). doi: 10.1137/1.9781611972368.

[16]

D. S. Naidu, T. Fernando and K. R. Fister, Optimal control in diabetes,, Optim. Control Appl. Meth., 32 (2011), 181. doi: 10.1002/oca.990.

[17]

R.M. Neilan and S. Lenhart, An introduction to optimal control with an application in disease modeling,, DIMACS Series in Discrete Mathematics, 75 (2010), 67.

[18]

L.T. Paiva, Optimal Control in Constrained and Hybrid Nonlinear Systems,, Project Report, (2013).

[19]

O. Prosper, O. Saucedo, D. Thompson, G. T. Garcia, X. Wang and C. Castillo-Chavez, Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza,, Mathematical Biosciences and Engineering, 8 (2011), 141. doi: 10.3934/mbe.2011.8.141.

[20]

P. Shi and L. Dong, Dynamical models for infectious diseases with varying population size and vaccinations,, Journal of Applied Mathematics, 2012 (2012), 1. doi: 10.1155/2012/824192.

[21]

H. Schäettler and U. Ledzewicz, Geometric Optimal Control. Theory, Methods and Examples,, Springer, (2012). doi: 10.1007/978-1-4614-3834-2.

[22]

C. Sun and Y. H. Hsieh, Global analysis of an SEIR model with varying population size and vaccination,, Applied Mathematical Modelling, 34 (2010), 2685. doi: 10.1016/j.apm.2009.12.005.

[23]

R. Vinter, Optimal Control,, Birkhäuser, (2000).

[24]

A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,, Mathematical Programming, 106 (2006), 25. doi: 10.1007/s10107-004-0559-y.

[1]

Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174

[2]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[3]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[4]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[5]

Maria do Rosário de Pinho, Ilya Shvartsman. Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 505-522. doi: 10.3934/dcds.2011.29.505

[6]

IvÁn Area, FaÏÇal NdaÏrou, Juan J. Nieto, Cristiana J. Silva, Delfim F. M. Torres. Ebola model and optimal control with vaccination constraints. Journal of Industrial & Management Optimization, 2018, 14 (2) : 427-446. doi: 10.3934/jimo.2017054

[7]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553

[8]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control & Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[9]

Alexander Tyatyushkin, Tatiana Zarodnyuk. Numerical method for solving optimal control problems with phase constraints. Numerical Algebra, Control & Optimization, 2017, 7 (4) : 481-492. doi: 10.3934/naco.2017030

[10]

Piermarco Cannarsa, Hélène Frankowska, Elsa M. Marchini. On Bolza optimal control problems with constraints. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 629-653. doi: 10.3934/dcdsb.2009.11.629

[11]

Matthias Gerdts, Martin Kunkel. A nonsmooth Newton's method for discretized optimal control problems with state and control constraints. Journal of Industrial & Management Optimization, 2008, 4 (2) : 247-270. doi: 10.3934/jimo.2008.4.247

[12]

Andrei V. Dmitruk, Alexander M. Kaganovich. Quadratic order conditions for an extended weak minimum in optimal control problems with intermediate and mixed constraints. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 523-545. doi: 10.3934/dcds.2011.29.523

[13]

Georg Vossen, Torsten Hermanns. On an optimal control problem in laser cutting with mixed finite-/infinite-dimensional constraints. Journal of Industrial & Management Optimization, 2014, 10 (2) : 503-519. doi: 10.3934/jimo.2014.10.503

[14]

M. Arisawa, P.-L. Lions. Continuity of admissible trajectories for state constraints control problems. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 297-305. doi: 10.3934/dcds.1996.2.297

[15]

Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579

[16]

Elimhan N. Mahmudov. Optimal control of second order delay-discrete and delay-differential inclusions with state constraints. Evolution Equations & Control Theory, 2018, 7 (3) : 501-529. doi: 10.3934/eect.2018024

[17]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[18]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[19]

Piernicola Bettiol, Hélène Frankowska. Lipschitz regularity of solution map of control systems with multiple state constraints. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 1-26. doi: 10.3934/dcds.2012.32.1

[20]

J.-P. Raymond. Nonlinear boundary control of semilinear parabolic problems with pointwise state constraints. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 341-370. doi: 10.3934/dcds.1997.3.341

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]