2013, 10(2): 345-367. doi: 10.3934/mbe.2013.10.345

Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey

1. 

Grupo de Ecología Matemática, Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile, Chile, Chile

2. 

Department of Mathematics, The University of South Dakota, Vermillion, SD 57069-2390, United States

Received  October 2011 Revised  August 2012 Published  January 2013

The main purpose of this work is to analyze a Gause type predator-prey model in which two ecological phenomena are considered: the Allee effect affecting the prey growth function and the formation of group defence by prey in order to avoid the predation.
    We prove the existence of a separatrix curves in the phase plane, determined by the stable manifold of the equilibrium point associated to the Allee effect, implying that the solutions are highly sensitive to the initial conditions.
    Trajectories starting at one side of this separatrix curve have the equilibrium point $(0,0)$ as their $\omega $-limit, while trajectories starting at the other side will approach to one of the following three attractors: a stable limit cycle, a stable coexistence point or the stable equilibrium point $(K,0)$ in which the predators disappear and prey attains their carrying capacity.
    We obtain conditions on the parameter values for the existence of one or two positive hyperbolic equilibrium points and the existence of a limit cycle surrounding one of them. Both ecological processes under study, namely the nonmonotonic functional response and the Allee effect on prey, exert a strong influence on the system dynamics, resulting in multiple domains of attraction.
    Using Liapunov quantities we demonstrate the uniqueness of limit cycle, which constitutes one of the main differences with the model where the Allee effect is not considered. Computer simulations are also given in support of the conclusions.
Citation: Eduardo González-Olivares, Betsabé González-Yañez, Jaime Mena-Lorca, José D. Flores. Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey. Mathematical Biosciences & Engineering, 2013, 10 (2) : 345-367. doi: 10.3934/mbe.2013.10.345
References:
[1]

A. Aguilera-Moya and E. González-Olivares, A Gause type model with a generalized class of nonmonotonic functional response,, in, 2 (2004), 206.

[2]

P. Aguirre, E. González-Olivares and E. Sáez, Three limit cycles in a Leslie-Gower predator-prey model with additive Allee effect,, SIAM Journal on Applied Mathematics, 69 (2009), 1244. doi: 10.1137/070705210.

[3]

D. K. Arrowsmith and C. M. Place, "Dynamical Systems. Differential Equations, Maps and Chaotic Behaviour,", Chapman and Hall, (1992).

[4]

A. D. Bazykin, "Nonlinear Dynamics of Interacting Populations,", World Scientific, (1998). doi: 10.1142/9789812798725.

[5]

L. Berec, E. Angulo and F. Courchamp, Multiple Allee effects and population management,, Trends in Ecology and Evolution, 22 (2007), 185.

[6]

D. S. Boukal and L. Berec, Single-species models and the Allee effect: Extinction boundaries, sex ratios and mate encounters,, Journal of Theoretical Biology, 218 (2002), 375. doi: 10.1006/jtbi.2002.3084.

[7]

C. Chicone, "Ordinary Differential Equations with Applications,", (2nd edition), (2006).

[8]

C. W. Clark, "Mathematical Bioeconomic: The Optimal Management of Renewable Resources,", (2nd edition), (1990).

[9]

C. W. Clark, "The Worldwide Crisis in Fisheries: Economic Model and Human Behavior,", Cambridge University Press, (2007).

[10]

C. S. Coleman, Hilbert's 16th. problem: How many cycles?,, in, (1983), 279.

[11]

J. B. Collings, The effect of the functional response on the bifurcation behavior of a mite predator-prey interaction model,, Journal of Mathematical Biology, 36 (1997), 149. doi: 10.1007/s002850050095.

[12]

E. D. Conway and J. A. Smoller, Global analysis of a system of predator-prey equations,, SIAM Journal on Applied Mathematics, 46 (1986), 630. doi: 10.1137/0146043.

[13]

F. Courchamp, T. Clutton-Brock and B. Grenfell, Inverse dependence and the Allee effect,, Trends in Ecology and Evolution, 14 (1999), 405.

[14]

F. Courchamp, L. Berec and J. Gascoigne, "Allee effects in Ecology and Conservation,", Oxford University Press, (2008).

[15]

F. Dumortier, J. Llibre and J. C. Artés, "Qualitative Ttheory of Planar Differential Systems,", Springer, (2006).

[16]

H. I. Freedman, "Deterministic Mathematical Model in Population Ecology,", Marcel Dekker, (1980).

[17]

H. I. Freedman and G. S. K. Wolkowicz, Predator-prey systems with group defence: The paradox of enrichment revisted,, Bulletin of Mathematical Biology, 48 (1986), 493. doi: 10.1016/S0092-8240(86)90004-2.

[18]

V. A. Gaiko, "Global Bifurcation Theory and Hilbert's Sixteenth Problem,", Mathematics an its applications, 559 (2003).

[19]

J. C. Gascoigne and R. N. Lipcius, Allee effects driven by predation,, Journal of Applied Ecology, 41 (2004), 801.

[20]

E. González-Olivares, B. González-Yañez, E. Sáez and I. Szantó, On the number of limit cycles in a predator prey model with non-monotonic functional response,, Discrete and Continuous Dynamical Systems, 6 (2006), 525. doi: 10.3934/dcdsb.2006.6.525.

[21]

E. González-Olivares, B. González-Yañez, J. Mena-Lorca and R. Ramos-Jiliberto, Modelling the Allee effect: Are the different mathematical forms proposed equivalents?,, in, (2007), 53.

[22]

E. González-Olivares, H. Meneses-Alcay, B. González-Yañez, J. Mena-Lorca, A. Rojas-Palma and R. Ramos-Jiliberto, Multiple stability and uniqueness of limit cycle in a Gause-type predator-prey model considering Allee effect on prey,, Nonlinear Analysis: Real World and Applications, 12 (2011), 2931. doi: 10.1016/j.nonrwa.2011.04.003.

[23]

E. González-Olivares and A. Rojas-Palma, Multiple limit cycles in a Gause type predator-prey model with Holling type III functional response and Allee effect on prey,, Bulletin of Mathematical Biology, 73 (2011), 1378. doi: 10.1007/s11538-010-9577-5.

[24]

E. González-Olivares, J. Mena-Lorca, A. Rojas-Palma and J. D. Flores, Dynamical complexities in the Leslie-Gower predator-prey model considering a simple form to the Allee effect on prey,, Applied Mathematical Modelling, 35 (2011), 366. doi: 10.1016/j.apm.2010.07.001.

[25]

B. González-Yañez and E. González-Olivares, Consequences of Allee effect on a Gause type predator-prey model with nonmonotonic functional response,, in, 2 (2004), 358.

[26]

K. Hasík, On a predator-prey system of Gause type,, Journal of Mathematical Biology, 60 (2010), 59. doi: 10.1007/s00285-009-0257-8.

[27]

M. Kot, "Elementary Mathematical Ecology,", Cambridge University Press, (2001). doi: 10.1017/CBO9780511608520.

[28]

Y. Kuang and H. I. Freedman, Uniqueness of limit cycles in Gause-type models of predator-prey systems,, Mathematical Biosciences, 88 (1988), 67. doi: 10.1016/0025-5564(88)90049-1.

[29]

M. Liermann and R. Hilborn, Depensation: Evidence, models and implications,, Fish and Fisheries, 2 (2001), 33.

[30]

L. Perko, "Differential Equations and Dynamical Systems,", (3rd ed), (2001).

[31]

A. Rojas-Palma, E. González-Olivares and B. González-Yañez, Metastability in a Gause type predator-prey models with sigmoid functional response and multiplicative Allee effect on prey,, in, (2007), 295.

[32]

S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response,, SIAM Journal of Applied Mathematics, 61 (2001), 1445. doi: 10.1137/S0036139999361896.

[33]

P. A. Stephens and W. J. Sutherland, Consequences of the Allee effect for behaviour, ecology and conservation,, Trends in Ecology and Evolution, 14 (1999), 401.

[34]

P. A. Stephens, W. J. Sutherland and R. P. Freckleton, What is the Allee effect?,, Oikos, 87 (1999), 185.

[35]

R. J. Taylor, "Predation,", Chapman and Hall, (1984).

[36]

P. Turchin, "Complex Population Dynamics. A Theoretical/Empirical Synthesis,", Monographs in Population Biology 35, (2003).

[37]

G. A. K. van Voorn, L. Hemerik, M. P. Boer and B. W. Kooi, Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect,, Mathematical Biosciences, 209 (2007), 451. doi: 10.1016/j.mbs.2007.02.006.

[38]

S. Véliz-Retamales and E. González-Olivares, Dynamics of a Gause type prey-predator model with a rational nonmonotonic consumption function,, in, 2 (2004), 181.

[39]

J. Wang, J. Shi and J. Wei, Predator-prey system with strong Allee effect in prey,, Journal of Mathematical Biology, 62 (2011), 291. doi: 10.1007/s00285-010-0332-1.

[40]

S. Wolfram, "Mathematica: A System for Doing Mathematics by Computer,", (2nd edition), (1991).

[41]

G. S. W. Wolkowicz, Bifurcation analysis of a predator-prey system involving group defense,, SIAM Journal on Applied Mathematics, 48 (1988), 592. doi: 10.1137/0148033.

[42]

D. Xiao and S. Ruan, Bifurcations in a predator-prey system with group defense,, International Journal of Bifurcation and Chaos, 11 (2001), 2123. doi: 10.1142/S021812740100336X.

[43]

D. Xiao and Z. Zhang, On the uniquenes and nonexsitence of limit cycles for predator-prey systems,, Nonlinearity, 16 (2003), 1185. doi: 10.1088/0951-7715/16/3/321.

[44]

H. Zhu, S. A. Campbell and G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system with nonmonotonic functional response,, SIAM Journal on Applied Mathematics, 63 (2002), 636. doi: 10.1137/S0036139901397285.

[45]

J. Zu and M. Mimura, The impact of Allee effect on a predator-prey system with Holling type II functional response,, Applied Mathematics and Computation, 217 (2010), 3542. doi: 10.1016/j.amc.2010.09.029.

show all references

References:
[1]

A. Aguilera-Moya and E. González-Olivares, A Gause type model with a generalized class of nonmonotonic functional response,, in, 2 (2004), 206.

[2]

P. Aguirre, E. González-Olivares and E. Sáez, Three limit cycles in a Leslie-Gower predator-prey model with additive Allee effect,, SIAM Journal on Applied Mathematics, 69 (2009), 1244. doi: 10.1137/070705210.

[3]

D. K. Arrowsmith and C. M. Place, "Dynamical Systems. Differential Equations, Maps and Chaotic Behaviour,", Chapman and Hall, (1992).

[4]

A. D. Bazykin, "Nonlinear Dynamics of Interacting Populations,", World Scientific, (1998). doi: 10.1142/9789812798725.

[5]

L. Berec, E. Angulo and F. Courchamp, Multiple Allee effects and population management,, Trends in Ecology and Evolution, 22 (2007), 185.

[6]

D. S. Boukal and L. Berec, Single-species models and the Allee effect: Extinction boundaries, sex ratios and mate encounters,, Journal of Theoretical Biology, 218 (2002), 375. doi: 10.1006/jtbi.2002.3084.

[7]

C. Chicone, "Ordinary Differential Equations with Applications,", (2nd edition), (2006).

[8]

C. W. Clark, "Mathematical Bioeconomic: The Optimal Management of Renewable Resources,", (2nd edition), (1990).

[9]

C. W. Clark, "The Worldwide Crisis in Fisheries: Economic Model and Human Behavior,", Cambridge University Press, (2007).

[10]

C. S. Coleman, Hilbert's 16th. problem: How many cycles?,, in, (1983), 279.

[11]

J. B. Collings, The effect of the functional response on the bifurcation behavior of a mite predator-prey interaction model,, Journal of Mathematical Biology, 36 (1997), 149. doi: 10.1007/s002850050095.

[12]

E. D. Conway and J. A. Smoller, Global analysis of a system of predator-prey equations,, SIAM Journal on Applied Mathematics, 46 (1986), 630. doi: 10.1137/0146043.

[13]

F. Courchamp, T. Clutton-Brock and B. Grenfell, Inverse dependence and the Allee effect,, Trends in Ecology and Evolution, 14 (1999), 405.

[14]

F. Courchamp, L. Berec and J. Gascoigne, "Allee effects in Ecology and Conservation,", Oxford University Press, (2008).

[15]

F. Dumortier, J. Llibre and J. C. Artés, "Qualitative Ttheory of Planar Differential Systems,", Springer, (2006).

[16]

H. I. Freedman, "Deterministic Mathematical Model in Population Ecology,", Marcel Dekker, (1980).

[17]

H. I. Freedman and G. S. K. Wolkowicz, Predator-prey systems with group defence: The paradox of enrichment revisted,, Bulletin of Mathematical Biology, 48 (1986), 493. doi: 10.1016/S0092-8240(86)90004-2.

[18]

V. A. Gaiko, "Global Bifurcation Theory and Hilbert's Sixteenth Problem,", Mathematics an its applications, 559 (2003).

[19]

J. C. Gascoigne and R. N. Lipcius, Allee effects driven by predation,, Journal of Applied Ecology, 41 (2004), 801.

[20]

E. González-Olivares, B. González-Yañez, E. Sáez and I. Szantó, On the number of limit cycles in a predator prey model with non-monotonic functional response,, Discrete and Continuous Dynamical Systems, 6 (2006), 525. doi: 10.3934/dcdsb.2006.6.525.

[21]

E. González-Olivares, B. González-Yañez, J. Mena-Lorca and R. Ramos-Jiliberto, Modelling the Allee effect: Are the different mathematical forms proposed equivalents?,, in, (2007), 53.

[22]

E. González-Olivares, H. Meneses-Alcay, B. González-Yañez, J. Mena-Lorca, A. Rojas-Palma and R. Ramos-Jiliberto, Multiple stability and uniqueness of limit cycle in a Gause-type predator-prey model considering Allee effect on prey,, Nonlinear Analysis: Real World and Applications, 12 (2011), 2931. doi: 10.1016/j.nonrwa.2011.04.003.

[23]

E. González-Olivares and A. Rojas-Palma, Multiple limit cycles in a Gause type predator-prey model with Holling type III functional response and Allee effect on prey,, Bulletin of Mathematical Biology, 73 (2011), 1378. doi: 10.1007/s11538-010-9577-5.

[24]

E. González-Olivares, J. Mena-Lorca, A. Rojas-Palma and J. D. Flores, Dynamical complexities in the Leslie-Gower predator-prey model considering a simple form to the Allee effect on prey,, Applied Mathematical Modelling, 35 (2011), 366. doi: 10.1016/j.apm.2010.07.001.

[25]

B. González-Yañez and E. González-Olivares, Consequences of Allee effect on a Gause type predator-prey model with nonmonotonic functional response,, in, 2 (2004), 358.

[26]

K. Hasík, On a predator-prey system of Gause type,, Journal of Mathematical Biology, 60 (2010), 59. doi: 10.1007/s00285-009-0257-8.

[27]

M. Kot, "Elementary Mathematical Ecology,", Cambridge University Press, (2001). doi: 10.1017/CBO9780511608520.

[28]

Y. Kuang and H. I. Freedman, Uniqueness of limit cycles in Gause-type models of predator-prey systems,, Mathematical Biosciences, 88 (1988), 67. doi: 10.1016/0025-5564(88)90049-1.

[29]

M. Liermann and R. Hilborn, Depensation: Evidence, models and implications,, Fish and Fisheries, 2 (2001), 33.

[30]

L. Perko, "Differential Equations and Dynamical Systems,", (3rd ed), (2001).

[31]

A. Rojas-Palma, E. González-Olivares and B. González-Yañez, Metastability in a Gause type predator-prey models with sigmoid functional response and multiplicative Allee effect on prey,, in, (2007), 295.

[32]

S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response,, SIAM Journal of Applied Mathematics, 61 (2001), 1445. doi: 10.1137/S0036139999361896.

[33]

P. A. Stephens and W. J. Sutherland, Consequences of the Allee effect for behaviour, ecology and conservation,, Trends in Ecology and Evolution, 14 (1999), 401.

[34]

P. A. Stephens, W. J. Sutherland and R. P. Freckleton, What is the Allee effect?,, Oikos, 87 (1999), 185.

[35]

R. J. Taylor, "Predation,", Chapman and Hall, (1984).

[36]

P. Turchin, "Complex Population Dynamics. A Theoretical/Empirical Synthesis,", Monographs in Population Biology 35, (2003).

[37]

G. A. K. van Voorn, L. Hemerik, M. P. Boer and B. W. Kooi, Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect,, Mathematical Biosciences, 209 (2007), 451. doi: 10.1016/j.mbs.2007.02.006.

[38]

S. Véliz-Retamales and E. González-Olivares, Dynamics of a Gause type prey-predator model with a rational nonmonotonic consumption function,, in, 2 (2004), 181.

[39]

J. Wang, J. Shi and J. Wei, Predator-prey system with strong Allee effect in prey,, Journal of Mathematical Biology, 62 (2011), 291. doi: 10.1007/s00285-010-0332-1.

[40]

S. Wolfram, "Mathematica: A System for Doing Mathematics by Computer,", (2nd edition), (1991).

[41]

G. S. W. Wolkowicz, Bifurcation analysis of a predator-prey system involving group defense,, SIAM Journal on Applied Mathematics, 48 (1988), 592. doi: 10.1137/0148033.

[42]

D. Xiao and S. Ruan, Bifurcations in a predator-prey system with group defense,, International Journal of Bifurcation and Chaos, 11 (2001), 2123. doi: 10.1142/S021812740100336X.

[43]

D. Xiao and Z. Zhang, On the uniquenes and nonexsitence of limit cycles for predator-prey systems,, Nonlinearity, 16 (2003), 1185. doi: 10.1088/0951-7715/16/3/321.

[44]

H. Zhu, S. A. Campbell and G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system with nonmonotonic functional response,, SIAM Journal on Applied Mathematics, 63 (2002), 636. doi: 10.1137/S0036139901397285.

[45]

J. Zu and M. Mimura, The impact of Allee effect on a predator-prey system with Holling type II functional response,, Applied Mathematics and Computation, 217 (2010), 3542. doi: 10.1016/j.amc.2010.09.029.

[1]

H. W. Broer, K. Saleh, V. Naudot, R. Roussarie. Dynamics of a predator-prey model with non-monotonic response function. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 221-251. doi: 10.3934/dcds.2007.18.221

[2]

E. González-Olivares, B. González-Yañez, Eduardo Sáez, I. Szántó. On the number of limit cycles in a predator prey model with non-monotonic functional response. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 525-534. doi: 10.3934/dcdsb.2006.6.525

[3]

Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065

[4]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[5]

Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75

[6]

Haiying Jing, Zhaoyu Yang. The impact of state feedback control on a predator-prey model with functional response. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 607-614. doi: 10.3934/dcdsb.2004.4.607

[7]

Shanshan Chen, Junping Shi, Junjie Wei. The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure & Applied Analysis, 2013, 12 (1) : 481-501. doi: 10.3934/cpaa.2013.12.481

[8]

Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045

[9]

Sze-Bi Hsu, Tzy-Wei Hwang, Yang Kuang. Global dynamics of a Predator-Prey model with Hassell-Varley Type functional response. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 857-871. doi: 10.3934/dcdsb.2008.10.857

[10]

Hongwei Yin, Xiaoyong Xiao, Xiaoqing Wen. Analysis of a Lévy-diffusion Leslie-Gower predator-prey model with nonmonotonic functional response. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2121-2151. doi: 10.3934/dcdsb.2018228

[11]

Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893

[12]

Wan-Tong Li, Yong-Hong Fan. Periodic solutions in a delayed predator-prey models with nonmonotonic functional response. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 175-185. doi: 10.3934/dcdsb.2007.8.175

[13]

Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035

[14]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[15]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875

[16]

Zengji Du, Xiao Chen, Zhaosheng Feng. Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1203-1214. doi: 10.3934/dcdss.2014.7.1203

[17]

Yujing Gao, Bingtuan Li. Dynamics of a ratio-dependent predator-prey system with a strong Allee effect. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2283-2313. doi: 10.3934/dcdsb.2013.18.2283

[18]

Yang Lu, Xia Wang, Shengqiang Liu. A non-autonomous predator-prey model with infected prey. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3817-3836. doi: 10.3934/dcdsb.2018082

[19]

Wenjie Ni, Mingxin Wang. Dynamical properties of a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3409-3420. doi: 10.3934/dcdsb.2017172

[20]

Moitri Sen, Malay Banerjee, Yasuhiro Takeuchi. Influence of Allee effect in prey populations on the dynamics of two-prey-one-predator model. Mathematical Biosciences & Engineering, 2018, 15 (4) : 883-904. doi: 10.3934/mbe.2018040

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

[Back to Top]