2013, 10(5&6): 1673-1686. doi: 10.3934/mbe.2013.10.1673

Increasing survival time decreases the cost-effectiveness of using "test & treat'' to eliminate HIV epidemics

1. 

Center for Biomedical Modeling, Semel Institute of Neuroscience & Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, 10940 Wilshire Blvd, Suite 1450, Los Angeles, CA 90024, United States, United States, United States

Received  November 2012 Revised  March 2013 Published  August 2013

Treating HIV-infected individuals reduces their viral load, consequently increasing their survival time and decreasing their infectivity. It has been proposed that universal testing and treatment (i.e., universal ``test & treat'') could lead to HIV elimination and would be extremely cost-effective. It is now being debated whether to use a universal ``test and treat'' approach in the ``real-world'' as a prevention strategy to control HIV epidemics. However current modeling predictions of the impact, and cost-effectiveness, of universal ``test & treat'' strategies are based on an unrealistically short survival time for treated individuals. Here we use mathematical modeling and a longer, more realistic, survival time. We model the potential impact of a universal ``test & treat'' strategy in South Africa. Our results show that increasing the length of the survival time on treatment, although beneficial to individuals, reduces the probability of eliminating HIV and decreases the cost-effectiveness of using universal ``test & treat'' strategies. Therefore our results show that individual-level benefits and public health benefits will conflict when using ``test & treat'' strategies to reduce HIV transmission.
Citation: Bradley G. Wagner, Brian J. Coburn, Sally Blower. Increasing survival time decreases the cost-effectiveness of using "test & treat'' to eliminate HIV epidemics. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1673-1686. doi: 10.3934/mbe.2013.10.1673
References:
[1]

S. Blower, H. B. Gershengorn and R. M. Grant, A tale of two futures: HIV and antiviral therapy in San Francisco,, Science, 287 (2000), 650.

[2]

S. Blower, L. Ma, P. Farmer and S. Koenig, Predicting the impact of antiretrovirals in resource-poor settings: preventing HIV infections whilst controlling drug resistance,, Curr. Drug Targets Infect. Disord., 3 (2003), 345. doi: 10.2174/1568005033480999.

[3]

S. Blower and H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example,, Int. Stat. Rev., 62 (1994), 229. doi: 10.2307/1403510.

[4]

M. S. Cohen, T. D. Mastro and W. Cates, Universal voluntary HIV testing and immediate antiretroviral therapy,, Lancet, 373 (2009), 1080. doi: 10.1016/S0140-6736(09)60640-1.

[5]

M. S. Cohen, Y. Q. Chen, M. McCauley, T. Gamble, M. C. Hosseinipour, N. Kumarasamy, J. G. Hakim, J. Kumwenda, B. Grinsztejn and J. H. S. Pilotto, et al., Prevention of HIV-1 infection with early antiretroviral therapy,, N. Engl. J. Med., 365 (2011), 493. doi: 10.1056/NEJMoa1105243.

[6]

M. Das, P. L. Chu, G.-M. Santos, S. Scheer, E. Vittinghoff, W. McFarland and G. N. Colfax, Decreases in community viral load are accompanied by reductions in new HIV infections in San Francisco,, PLoS ONE, 5 (2010). doi: 10.1371/journal.pone.0011068.

[7]

C. W. Dieffenbach and A. S. Fauci, Universal voluntary testing and treatment for prevention of HIV transmission,, JAMA, 301 (2009), 2380. doi: 10.1001/jama.2009.828.

[8]

O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,'', Wiley Series in Mathematical and Computational Biology, (2000).

[9]

P. J. Dodd, G. P. Garnett and T. B. Hallett, Examining the promise of HIV elimination by 'test and treat' in hyperendemic settings,, AIDS, 24 (2010), 729. doi: 10.1097/QAD.0b013e32833433fe.

[10]

W. M. El-Sadr, M. Affrunti, T. Gamble and A. Zerbe, Antiretroviral therapy: A promising HIV prevention strategy?,, J. Acquir. Immune Defic. Syndr., 55 (2010), 116. doi: 10.1097/QAI.0b013e3181fbca6e.

[11]

P. Farmer, F. Léandre, J. S. Mukheriee, M. Claude, P. Nevil, M. C. Smith-Fawzi, S. P. Koenig, A. Castro, M. C. Becerra, J. Sachs, et al., Community-based approaches to HIV treatment in resource-poor settings,, Lancet, 358 (2001), 404. doi: 10.1016/S0140-6736(01)05550-7.

[12]

E. M. Gardner, M. P. McLees, J. F. Steiner, C. del Rio and W. J. Burman, The spectrum of engagement in HIV care and its relevance to test-and-treat strategies for prevention of HIV infection,, Clin. Infect. Dis., 52 (2011), 793. doi: 10.1093/cid/ciq243.

[13]

G. P. Garnett and R. F. Baggaley, Treating our way out of the HIV pandemic: Could we, would we, should we?,, Lancet, 373 (2009), 9. doi: 10.1016/S0140-6736(08)61698-0.

[14]

R. M. Granich, C. F. Gilks, C. Dye, K. M. De Cock and B. G. Williams, Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: A mathematical model,, Lancet, 373 (2009), 48. doi: 10.1016/S0140-6736(08)61697-9.

[15]

R. Granich, J. G. Kahn, R. Bennett, C. B. Holmes, N. Garg, C. Serenata, M. L. Sabin, C. Makhlouf-Obermeyer, C. De Filippo Mack and P. Williams, et al., Expanding ART for treatment and prevention of HIV in South Africa: Estimated cost and cost-effectiveness 2011-2050,, PLoS ONE, 7 (2012). doi: 10.1371/journal.pone.0030216.

[16]

R. H. Gray, M. J. Wawer, R. Brookmeyer, N. K. Sewankambo, D. Serwadda, F. Wabwire-Mangen, T. Lutalo, X. Li, T. vanCott, T. C. Quinn and R. P. Team, Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai, Uganda,, Lancet, 357 (2001), 1149. doi: 10.1016/S0140-6736(00)04331-2.

[17]

H. W. Hethcote and J. A. Yorke, "Gonorrhea Transmission Dynamics and Control,", Lecture Notes in Biomathematics, 56 (1984).

[18]

V. D. Lima, K. Johnston, R. S. Hogg, A. R. Levy, P. R. Harrigan, A. Anema and J. S. G. Montaner, Expanded access to highly active antiretroviral therapy: A potentially powerful strategy to curb the growth of the HIV epidemic,, J. Infect. Dis., 198 (2008), 59. doi: 10.1086/588673.

[19]

E. J. Mills, C. Bakanda, J. Birungi, K. Chan, N. Ford, C. L. Cooper, J. B. Nachega, M. Dybul and R. S. Hogg, Life expectancy of persons receiving combination antiretroviral therapy in low-income countries: A cohort analysis from Uganda,, Ann. Intern. Med., 155 (2011), 209. doi: 10.7326/0003-4819-155-4-201108160-00358.

[20]

J. S. G. Montaner, R. Hogg, E. Wood, T. Kerr, M. Tyndall, A. R. Levy and P. R. Harrigan, The case for expanding access to highly active antiretroviral therapy to curb the growth of the HIV epidemic,, Lancet, 368 (2006), 531. doi: 10.1016/S0140-6736(06)69162-9.

[21]

National Department of Health, The national antenatal sentinel HIV and syphilis prevalence survey, South Africa, 2006,, (2007)., (2007).

[22]

National Department of Health, The national antenatal sentinel HIV and syphilis prevalence survey, South Africa, 2010,, (2011)., (2011).

[23]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6.

[24]

J. X. Velasco-Hernandez, H. B. Gershengorn and S. M. Blower, Could widespread use of combination antiretroviral therapy eradicate HIV epidemics?,, Lancet Infect. Dis., 2 (2002), 487. doi: 10.1016/S1473-3099(02)00346-8.

[25]

B. G. Wagner, J. S. Kahn and S. Blower, Should we try to eliminate HIV epidemics by using a 'Test and Treat' strategy?,, AIDS, 24 (2010), 775. doi: 10.1097/QAD.0b013e3283366782.

[26]

B. G. Wagner and S. Blower, Costs of eliminating HIV in South Africa have been underestimated,, Lancet, 376 (2010), 953. doi: 10.1016/S0140-6736(10)61442-0.

[27]

B. G. Wagner and S. Blower, Universal access to HIV treatment versus universal 'test and treat': Transmission, drug resistance & treatment costs,, PLoS ONE, 7 (2012). doi: 10.1371/journal.pone.0041212.

show all references

References:
[1]

S. Blower, H. B. Gershengorn and R. M. Grant, A tale of two futures: HIV and antiviral therapy in San Francisco,, Science, 287 (2000), 650.

[2]

S. Blower, L. Ma, P. Farmer and S. Koenig, Predicting the impact of antiretrovirals in resource-poor settings: preventing HIV infections whilst controlling drug resistance,, Curr. Drug Targets Infect. Disord., 3 (2003), 345. doi: 10.2174/1568005033480999.

[3]

S. Blower and H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example,, Int. Stat. Rev., 62 (1994), 229. doi: 10.2307/1403510.

[4]

M. S. Cohen, T. D. Mastro and W. Cates, Universal voluntary HIV testing and immediate antiretroviral therapy,, Lancet, 373 (2009), 1080. doi: 10.1016/S0140-6736(09)60640-1.

[5]

M. S. Cohen, Y. Q. Chen, M. McCauley, T. Gamble, M. C. Hosseinipour, N. Kumarasamy, J. G. Hakim, J. Kumwenda, B. Grinsztejn and J. H. S. Pilotto, et al., Prevention of HIV-1 infection with early antiretroviral therapy,, N. Engl. J. Med., 365 (2011), 493. doi: 10.1056/NEJMoa1105243.

[6]

M. Das, P. L. Chu, G.-M. Santos, S. Scheer, E. Vittinghoff, W. McFarland and G. N. Colfax, Decreases in community viral load are accompanied by reductions in new HIV infections in San Francisco,, PLoS ONE, 5 (2010). doi: 10.1371/journal.pone.0011068.

[7]

C. W. Dieffenbach and A. S. Fauci, Universal voluntary testing and treatment for prevention of HIV transmission,, JAMA, 301 (2009), 2380. doi: 10.1001/jama.2009.828.

[8]

O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,'', Wiley Series in Mathematical and Computational Biology, (2000).

[9]

P. J. Dodd, G. P. Garnett and T. B. Hallett, Examining the promise of HIV elimination by 'test and treat' in hyperendemic settings,, AIDS, 24 (2010), 729. doi: 10.1097/QAD.0b013e32833433fe.

[10]

W. M. El-Sadr, M. Affrunti, T. Gamble and A. Zerbe, Antiretroviral therapy: A promising HIV prevention strategy?,, J. Acquir. Immune Defic. Syndr., 55 (2010), 116. doi: 10.1097/QAI.0b013e3181fbca6e.

[11]

P. Farmer, F. Léandre, J. S. Mukheriee, M. Claude, P. Nevil, M. C. Smith-Fawzi, S. P. Koenig, A. Castro, M. C. Becerra, J. Sachs, et al., Community-based approaches to HIV treatment in resource-poor settings,, Lancet, 358 (2001), 404. doi: 10.1016/S0140-6736(01)05550-7.

[12]

E. M. Gardner, M. P. McLees, J. F. Steiner, C. del Rio and W. J. Burman, The spectrum of engagement in HIV care and its relevance to test-and-treat strategies for prevention of HIV infection,, Clin. Infect. Dis., 52 (2011), 793. doi: 10.1093/cid/ciq243.

[13]

G. P. Garnett and R. F. Baggaley, Treating our way out of the HIV pandemic: Could we, would we, should we?,, Lancet, 373 (2009), 9. doi: 10.1016/S0140-6736(08)61698-0.

[14]

R. M. Granich, C. F. Gilks, C. Dye, K. M. De Cock and B. G. Williams, Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: A mathematical model,, Lancet, 373 (2009), 48. doi: 10.1016/S0140-6736(08)61697-9.

[15]

R. Granich, J. G. Kahn, R. Bennett, C. B. Holmes, N. Garg, C. Serenata, M. L. Sabin, C. Makhlouf-Obermeyer, C. De Filippo Mack and P. Williams, et al., Expanding ART for treatment and prevention of HIV in South Africa: Estimated cost and cost-effectiveness 2011-2050,, PLoS ONE, 7 (2012). doi: 10.1371/journal.pone.0030216.

[16]

R. H. Gray, M. J. Wawer, R. Brookmeyer, N. K. Sewankambo, D. Serwadda, F. Wabwire-Mangen, T. Lutalo, X. Li, T. vanCott, T. C. Quinn and R. P. Team, Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai, Uganda,, Lancet, 357 (2001), 1149. doi: 10.1016/S0140-6736(00)04331-2.

[17]

H. W. Hethcote and J. A. Yorke, "Gonorrhea Transmission Dynamics and Control,", Lecture Notes in Biomathematics, 56 (1984).

[18]

V. D. Lima, K. Johnston, R. S. Hogg, A. R. Levy, P. R. Harrigan, A. Anema and J. S. G. Montaner, Expanded access to highly active antiretroviral therapy: A potentially powerful strategy to curb the growth of the HIV epidemic,, J. Infect. Dis., 198 (2008), 59. doi: 10.1086/588673.

[19]

E. J. Mills, C. Bakanda, J. Birungi, K. Chan, N. Ford, C. L. Cooper, J. B. Nachega, M. Dybul and R. S. Hogg, Life expectancy of persons receiving combination antiretroviral therapy in low-income countries: A cohort analysis from Uganda,, Ann. Intern. Med., 155 (2011), 209. doi: 10.7326/0003-4819-155-4-201108160-00358.

[20]

J. S. G. Montaner, R. Hogg, E. Wood, T. Kerr, M. Tyndall, A. R. Levy and P. R. Harrigan, The case for expanding access to highly active antiretroviral therapy to curb the growth of the HIV epidemic,, Lancet, 368 (2006), 531. doi: 10.1016/S0140-6736(06)69162-9.

[21]

National Department of Health, The national antenatal sentinel HIV and syphilis prevalence survey, South Africa, 2006,, (2007)., (2007).

[22]

National Department of Health, The national antenatal sentinel HIV and syphilis prevalence survey, South Africa, 2010,, (2011)., (2011).

[23]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6.

[24]

J. X. Velasco-Hernandez, H. B. Gershengorn and S. M. Blower, Could widespread use of combination antiretroviral therapy eradicate HIV epidemics?,, Lancet Infect. Dis., 2 (2002), 487. doi: 10.1016/S1473-3099(02)00346-8.

[25]

B. G. Wagner, J. S. Kahn and S. Blower, Should we try to eliminate HIV epidemics by using a 'Test and Treat' strategy?,, AIDS, 24 (2010), 775. doi: 10.1097/QAD.0b013e3283366782.

[26]

B. G. Wagner and S. Blower, Costs of eliminating HIV in South Africa have been underestimated,, Lancet, 376 (2010), 953. doi: 10.1016/S0140-6736(10)61442-0.

[27]

B. G. Wagner and S. Blower, Universal access to HIV treatment versus universal 'test and treat': Transmission, drug resistance & treatment costs,, PLoS ONE, 7 (2012). doi: 10.1371/journal.pone.0041212.

[1]

Folashade B. Agusto. Optimal control and cost-effectiveness analysis of a three age-structured transmission dynamics of chikungunya virus. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 687-715. doi: 10.3934/dcdsb.2017034

[2]

Ping Yan. A frailty model for intervention effectiveness against disease transmission when implemented with unobservable heterogeneity. Mathematical Biosciences & Engineering, 2018, 15 (1) : 275-298. doi: 10.3934/mbe.2018012

[3]

Jinliang Wang, Jiying Lang, Yuming Chen. Global dynamics of an age-structured HIV infection model incorporating latency and cell-to-cell transmission. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3721-3747. doi: 10.3934/dcdsb.2017186

[4]

Jinhu Xu, Yicang Zhou. Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences & Engineering, 2016, 13 (2) : 343-367. doi: 10.3934/mbe.2015006

[5]

Jane M. Heffernan, Yijun Lou, Marc Steben, Jianhong Wu. Cost-effectiveness evaluation of gender-based vaccination programs against sexually transmitted infections. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 447-466. doi: 10.3934/dcdsb.2014.19.447

[6]

Cristina Cross, Alysse Edwards, Dayna Mercadante, Jorge Rebaza. Dynamics of a networked connectivity model of epidemics. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3379-3390. doi: 10.3934/dcdsb.2016102

[7]

Stephen Tully, Monica-Gabriela Cojocaru, Chris T. Bauch. Multiplayer games and HIV transmission via casual encounters. Mathematical Biosciences & Engineering, 2017, 14 (2) : 359-376. doi: 10.3934/mbe.2017023

[8]

Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455

[9]

Qingkai Kong, Zhipeng Qiu, Zi Sang, Yun Zou. Optimal control of a vector-host epidemics model. Mathematical Control & Related Fields, 2011, 1 (4) : 493-508. doi: 10.3934/mcrf.2011.1.493

[10]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[11]

Yicang Zhou, Yiming Shao, Yuhua Ruan, Jianqing Xu, Zhien Ma, Changlin Mei, Jianhong Wu. Modeling and prediction of HIV in China: transmission rates structured by infection ages. Mathematical Biosciences & Engineering, 2008, 5 (2) : 403-418. doi: 10.3934/mbe.2008.5.403

[12]

Moatlhodi Kgosimore, Edward M. Lungu. The Effects of Vertical Transmission on the Spread of HIV/AIDS in the Presence of Treatment. Mathematical Biosciences & Engineering, 2006, 3 (2) : 297-312. doi: 10.3934/mbe.2006.3.297

[13]

Oluwaseun Sharomi, Chandra N. Podder, Abba B. Gumel, Baojun Song. Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment. Mathematical Biosciences & Engineering, 2008, 5 (1) : 145-174. doi: 10.3934/mbe.2008.5.145

[14]

Romulus Breban, Ian McGowan, Chad Topaz, Elissa J. Schwartz, Peter Anton, Sally Blower. Modeling the potential impact of rectal microbicides to reduce HIV transmission in bathhouses. Mathematical Biosciences & Engineering, 2006, 3 (3) : 459-466. doi: 10.3934/mbe.2006.3.459

[15]

Hui Wan, Jing-An Cui. A model for the transmission of malaria. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 479-496. doi: 10.3934/dcdsb.2009.11.479

[16]

Filipe Rodrigues, Cristiana J. Silva, Delfim F. M. Torres, Helmut Maurer. Optimal control of a delayed HIV model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 443-458. doi: 10.3934/dcdsb.2018030

[17]

Lars Grüne, Marleen Stieler. Multiobjective model predictive control for stabilizing cost criteria. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-24. doi: 10.3934/dcdsb.2018336

[18]

Mahin Salmani, P. van den Driessche. A model for disease transmission in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 185-202. doi: 10.3934/dcdsb.2006.6.185

[19]

Aditya S. Khanna, Dobromir T. Dimitrov, Steven M. Goodreau. What can mathematical models tell us about the relationship between circular migrations and HIV transmission dynamics?. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1065-1090. doi: 10.3934/mbe.2014.11.1065

[20]

Helen Moore, Weiqing Gu. A mathematical model for treatment-resistant mutations of HIV. Mathematical Biosciences & Engineering, 2005, 2 (2) : 363-380. doi: 10.3934/mbe.2005.2.363

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

[Back to Top]