• Previous Article
    Global dynamics of the chemostat with different removal rates and variable yields
  • MBE Home
  • This Issue
  • Next Article
    Numerical characterization of hemodynamics conditions near aortic valve after implantation of left ventricular assist device
2011, 8(3): 807-825. doi: 10.3934/mbe.2011.8.807

Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents

1. 

Mathematics Department, University of Louisiana at Lafayette, Lafayette, LA 70504, United States

Received  October 2010 Revised  March 2011 Published  June 2011

This paper extends the work of Salceanu and Smith [12, 13] where Lyapunov exponents were used to obtain conditions for uniform persistence in a class of dissipative discrete-time dynamical systems on the positive orthant of $\mathbb{R}^m$, generated by maps. Here a unified approach is taken, for both discrete and continuous time, and the dissipativity assumption is relaxed. Sufficient conditions are given for compact subsets of an invariant part of the boundary of $\mathbb{R}^m_+$ to be robust uniform weak repellers. These conditions require Lyapunov exponents be positive on such sets. It is shown how this leads to robust uniform persistence. The results apply to the investigation of robust uniform persistence of the disease in host populations, as shown in an application.
Citation: Paul L. Salceanu. Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents. Mathematical Biosciences & Engineering, 2011, 8 (3) : 807-825. doi: 10.3934/mbe.2011.8.807
References:
[1]

L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998). Google Scholar

[2]

P. Ashwin, J. Buescu and I. Stewart, From attractor to chaotic saddle: A tale of transverse instability,, Nonlinearity, 9 (1996), 703. doi: 10.1088/0951-7715/9/3/006. Google Scholar

[3]

C. Conley, "Isolated Invariant Sets and the Morse Index,", CBMS Regional Conference Series in Mathematics, 38 (1978). Google Scholar

[4]

B. M. Garay and J. Hofbauer, Robust permanence for ecological differential equations, minimax, and discretizations,, SIAM J. Math. Anal., 34 (2003), 1007. doi: 10.1137/S0036141001392815. Google Scholar

[5]

J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems,, SIAM J. Math. Anal., 20 (1989), 388. doi: 10.1137/0520025. Google Scholar

[6]

M. W. Hirsch, H. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity and strong repellors for semidynamical systems,, J. Dynamics and Diff. Eqns., 13 (2001), 107. doi: 10.1023/A:1009044515567. Google Scholar

[7]

J. Hofbauer and S. J. Schreiber, Robust permanence for interacting structured populations,, J. Diff. Eqns., 248 (2010), 1955. doi: 10.1016/j.jde.2009.11.010. Google Scholar

[8]

E. O. Jones, A. White and M. Boots, Interference and the persistence of vertically transmitted parasites,, J. Theor. Biol., 246 (2007), 10. doi: 10.1016/j.jtbi.2006.12.007. Google Scholar

[9]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", Encyclopedia of Mathematics and its Applications, 54 (1995). Google Scholar

[10]

J. F. Reineck, Continuation to gradient flows,, Duke Math. J., 64 (1991), 261. doi: 10.1215/S0012-7094-91-06413-6. Google Scholar

[11]

P. L. Salceanu, "Lyapunov Exponents and Persistence in Dynamical Systems with Applications to some Discrete Time Models,", Ph.D thesis, (2009). Google Scholar

[12]

P. L. Salceanu and H. L. Smith, Lyapunov exponents and persistence in discrete dynamical systems,, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 187. doi: 10.3934/dcdsb.2009.12.187. Google Scholar

[13]

P. L. Salceanu and H. L. Smith, Lyapunov exponents and uniform weak normally repelling invariant sets,, in, 389 (2009), 17. Google Scholar

[14]

S. Schreiber, Criteria for $C^r$ robust permanence,, J. Differential Equations, 162 (2000), 400. doi: 10.1006/jdeq.1999.3719. Google Scholar

[15]

E. Seneta, "Non-negative Matrices. An Introduction to Theory and Applications,", Halsted Press, (1973). Google Scholar

[16]

H. L. Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,", Mathematical Surveys and Monographs, (1995). Google Scholar

[17]

H. L. Smith and P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition,", Cambridge Studies in Mathematical Biology, 13 (1995). Google Scholar

[18]

H. L. Smith and H. Thieme, "Dynamical Systems and Population Persistence,", Graduate Studies in Mathematics, 118 (2011). Google Scholar

[19]

H. L. Smith, X.-Q. Zhao, Robust persistence for semi-dynamical systems,, Nonlinear Analysis, 47 (2001), 6169. doi: 10.1016/S0362-546X(01)00678-2. Google Scholar

[20]

H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model),, SIAM J. Math. Anal., 24 (1993), 407. doi: 10.1137/0524026. Google Scholar

[21]

X.-Q. Zhao, "Dynamical Systems in Population Biology,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 16 (2003). Google Scholar

show all references

References:
[1]

L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998). Google Scholar

[2]

P. Ashwin, J. Buescu and I. Stewart, From attractor to chaotic saddle: A tale of transverse instability,, Nonlinearity, 9 (1996), 703. doi: 10.1088/0951-7715/9/3/006. Google Scholar

[3]

C. Conley, "Isolated Invariant Sets and the Morse Index,", CBMS Regional Conference Series in Mathematics, 38 (1978). Google Scholar

[4]

B. M. Garay and J. Hofbauer, Robust permanence for ecological differential equations, minimax, and discretizations,, SIAM J. Math. Anal., 34 (2003), 1007. doi: 10.1137/S0036141001392815. Google Scholar

[5]

J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems,, SIAM J. Math. Anal., 20 (1989), 388. doi: 10.1137/0520025. Google Scholar

[6]

M. W. Hirsch, H. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity and strong repellors for semidynamical systems,, J. Dynamics and Diff. Eqns., 13 (2001), 107. doi: 10.1023/A:1009044515567. Google Scholar

[7]

J. Hofbauer and S. J. Schreiber, Robust permanence for interacting structured populations,, J. Diff. Eqns., 248 (2010), 1955. doi: 10.1016/j.jde.2009.11.010. Google Scholar

[8]

E. O. Jones, A. White and M. Boots, Interference and the persistence of vertically transmitted parasites,, J. Theor. Biol., 246 (2007), 10. doi: 10.1016/j.jtbi.2006.12.007. Google Scholar

[9]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", Encyclopedia of Mathematics and its Applications, 54 (1995). Google Scholar

[10]

J. F. Reineck, Continuation to gradient flows,, Duke Math. J., 64 (1991), 261. doi: 10.1215/S0012-7094-91-06413-6. Google Scholar

[11]

P. L. Salceanu, "Lyapunov Exponents and Persistence in Dynamical Systems with Applications to some Discrete Time Models,", Ph.D thesis, (2009). Google Scholar

[12]

P. L. Salceanu and H. L. Smith, Lyapunov exponents and persistence in discrete dynamical systems,, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 187. doi: 10.3934/dcdsb.2009.12.187. Google Scholar

[13]

P. L. Salceanu and H. L. Smith, Lyapunov exponents and uniform weak normally repelling invariant sets,, in, 389 (2009), 17. Google Scholar

[14]

S. Schreiber, Criteria for $C^r$ robust permanence,, J. Differential Equations, 162 (2000), 400. doi: 10.1006/jdeq.1999.3719. Google Scholar

[15]

E. Seneta, "Non-negative Matrices. An Introduction to Theory and Applications,", Halsted Press, (1973). Google Scholar

[16]

H. L. Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,", Mathematical Surveys and Monographs, (1995). Google Scholar

[17]

H. L. Smith and P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition,", Cambridge Studies in Mathematical Biology, 13 (1995). Google Scholar

[18]

H. L. Smith and H. Thieme, "Dynamical Systems and Population Persistence,", Graduate Studies in Mathematics, 118 (2011). Google Scholar

[19]

H. L. Smith, X.-Q. Zhao, Robust persistence for semi-dynamical systems,, Nonlinear Analysis, 47 (2001), 6169. doi: 10.1016/S0362-546X(01)00678-2. Google Scholar

[20]

H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model),, SIAM J. Math. Anal., 24 (1993), 407. doi: 10.1137/0524026. Google Scholar

[21]

X.-Q. Zhao, "Dynamical Systems in Population Biology,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 16 (2003). Google Scholar

[1]

Paul L. Salceanu, H. L. Smith. Lyapunov exponents and persistence in discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 187-203. doi: 10.3934/dcdsb.2009.12.187

[2]

Sebastian J. Schreiber. On persistence and extinction for randomly perturbed dynamical systems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 457-463. doi: 10.3934/dcdsb.2007.7.457

[3]

Frédéric Grognard, Frédéric Mazenc, Alain Rapaport. Polytopic Lyapunov functions for persistence analysis of competing species. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 73-93. doi: 10.3934/dcdsb.2007.8.73

[4]

Liang Kong, Tung Nguyen, Wenxian Shen. Effects of localized spatial variations on the uniform persistence and spreading speeds of time periodic two species competition systems. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1613-1636. doi: 10.3934/cpaa.2019077

[5]

Doan Thai Son. On analyticity for Lyapunov exponents of generic bounded linear random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3113-3126. doi: 10.3934/dcdsb.2017166

[6]

Horst R. Thieme. Distributed susceptibility: A challenge to persistence theory in infectious disease models. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 865-882. doi: 10.3934/dcdsb.2009.12.865

[7]

Kaifa Wang, Aijun Fan. Uniform persistence and periodic solution of chemostat-type model with antibiotic. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 789-795. doi: 10.3934/dcdsb.2004.4.789

[8]

Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041

[9]

Xiaocai Wang, Junxiang Xu, Dongfeng Zhang. On the persistence of lower-dimensional elliptic tori with prescribed frequencies in reversible systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1677-1692. doi: 10.3934/dcds.2016.36.1677

[10]

Antoine Perasso. Global stability and uniform persistence for an infection load-structured SI model with exponential growth velocity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 15-32. doi: 10.3934/cpaa.2019002

[11]

Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 559-579. doi: 10.3934/mbe.2017033

[12]

Boris Kalinin, Victoria Sadovskaya. Lyapunov exponents of cocycles over non-uniformly hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5105-5118. doi: 10.3934/dcds.2018224

[13]

Xueting Tian, Shirou Wang, Xiaodong Wang. Intermediate Lyapunov exponents for systems with periodic orbit gluing property. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1019-1032. doi: 10.3934/dcds.2019042

[14]

Chunyan Ji, Daqing Jiang. Persistence and non-persistence of a mutualism system with stochastic perturbation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 867-889. doi: 10.3934/dcds.2012.32.867

[15]

P.E. Kloeden, Desheng Li, Chengkui Zhong. Uniform attractors of periodic and asymptotically periodic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 213-232. doi: 10.3934/dcds.2005.12.213

[16]

Suqi Ma. Low viral persistence of an immunological model. Mathematical Biosciences & Engineering, 2012, 9 (4) : 809-817. doi: 10.3934/mbe.2012.9.809

[17]

Vincent Giovangigli. Persistence of Boltzmann entropy in fluid models. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 95-114. doi: 10.3934/dcds.2009.24.95

[18]

M. P. Moschen, A. Pugliese. The threshold for persistence of parasites with multiple infections. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1483-1496. doi: 10.3934/cpaa.2008.7.1483

[19]

Lei Wang, Quan Yuan, Jia Li. Persistence of the hyperbolic lower dimensional non-twist invariant torus in a class of Hamiltonian systems. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1233-1250. doi: 10.3934/cpaa.2016.15.1233

[20]

Xiaocai Wang, Junxiang Xu, Dongfeng Zhang. Persistence of lower dimensional elliptic invariant tori for a class of nearly integrable reversible systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1237-1249. doi: 10.3934/dcdsb.2010.14.1237

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]