2011, 8(3): 677-687. doi: 10.3934/mbe.2011.8.677

A simple analysis of vaccination strategies for rubella

1. 

Department of Mathematics and Applications, University of Naples Federico II, via Cintia, I-80126 Naples

Received  October 2010 Revised  October 2010 Published  June 2011

We consider an SEIR epidemic model with vertical transmission introduced by Li, Smith and Wang, [23], and apply optimal control theory to assess the effects of vaccination strategies on the model dynamics. The strategy is chosen to minimize the total number of infectious individuals and the cost associated with vaccination. We derive the optimality system and solve it numerically. The theoretical findings are then used to simulate a vaccination campaign for rubella in China.
Citation: Bruno Buonomo. A simple analysis of vaccination strategies for rubella. Mathematical Biosciences & Engineering, 2011, 8 (3) : 677-687. doi: 10.3934/mbe.2011.8.677
References:
[1]

R. M. Anderson and R. M. May, "Infectious Diseases in Humans: Dynamics and Control,", Oxford University Press, (1991).

[2]

E. Asano, L. J. Gross, S. Lenhart and L. A. Real, Optimal control of vaccine distribution in a rabies metapopulation model,, Math. Biosci. Engineering, 5 (2008), 219.

[3]

H. Behncke, Optimal control of deterministic epidemics,, Optim. Control Appl. Meth., 21 (2000), 269. doi: 10.1002/oca.678.

[4]

K. W. Blayneh, A. B. Gumel, S. Lenhart and T. Clayton, Backward bifurcation and optimal control in transmission dynamics of West Nile virus,, Bull. Math. Biol., 72 (2010), 1006. doi: 10.1007/s11538-009-9480-0.

[5]

C. Bowman and A. B. Gumel, Optimal vaccination strategies for an influenza-like illness in a heterogeneous population,, in, 410 (2006), 31.

[6]

F. Brauer, P. van den Driessche and J. Wu, editors, "Mathematical Epidemiology,", Lecture Notes in Mathematics, 1945 (2008).

[7]

B. Buonomo and D. Lacitignola, On the use of the geometric approach to global stability for three-dimensional ODE systems: A bilinear case,, J. Math. Anal. Appl., 348 (2008), 255. doi: 10.1016/j.jmaa.2008.07.021.

[8]

S. Busenberg and K. Cooke, "Vertically Transmitted Diseases. Models and Dynamics,", Biomathematics, 23 (1993).

[9]

V. Capasso, "Mathematical Structures of Epidemic Systems,", Lecture Notes in Biomath., 97 (1993).

[10]

World Health Organization, Western Pacific Region. Countries and Areas: China 2007., Available from:, \url{http://www.wpro.who.int/countries/2007/chn/}., ().

[11]

F. T. Cutts and E. Vynnycky, Modelling the incidence of congenital rubella syndrome in developing countries,, Int. J. Epidemiol., 28 (1999), 1176. doi: 10.1093/ije/28.6.1176.

[12]

A. d'Onofrio, Globally stable vaccine-induced eradication of horizontally and vertically transmitted infectious disease with periodic contact rates and disease-dependent demographic factors in the population,, Appl. Math. Comput., 140 (2003), 537. doi: 10.1016/S0096-3003(02)00251-5.

[13]

A. d'Onofrio, On pulse vaccination strategy in the SIR epidemic model with vertical transmission,, Appl. Math. Lett., 18 (2005), 729. doi: 10.1016/j.aml.2004.05.012.

[14]

L. Dontigny, M. Y. Arsenault, M. J. Martel, et al., Rubella in pregnancy, Society of Obstetricians and Gyneacologists of Canada clinical practice guidelines,, J. Obstet. Gynaecol. Can., 30 (2008), 152.

[15]

H. Gaff and E. Schaefer, Optimal control applied to vaccination and treatment strategies for various epidemiological models,, Math. Biosci. Eng., 6 (2009), 469. doi: 10.3934/mbe.2009.6.469.

[16]

L. Gao and H. Hethcote, Simulations of rubella vaccination strategies in China,, Math. Biosci., 202 (2006), 371. doi: 10.1016/j.mbs.2006.02.005.

[17]

K. Hattaf, M. Rachik, S. Saadi, Y. Tabit and N. Yousfi, Optimal control of tuberculosis with exogenous reinfection,, Appl. Math. Sci. (Ruse), 3 (2009), 231.

[18]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Rev. \textbf{42} (2000), 42 (2000), 599. doi: 10.1137/S0036144500371907.

[19]

H. R. Joshi, S. Lenhart, M. Y. Li and L. Wang, Optimal control methods applied to disease models,, in, 410 (2006), 187.

[20]

E. Jung, S. Iwami, Y. Takeuchi and Tae-Chang Jo, Optimal control strategy for prevention of avian influenza pandemic,, J. Theor. Biol., 260 (2009), 220. doi: 10.1016/j.jtbi.2009.05.031.

[21]

E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model,, Discrete Contin. Dyn. Syst. Ser. B, 2 (2002), 473. doi: 10.3934/dcdsb.2002.2.473.

[22]

S. Lenhart and J. T. Workman, "Optimal Control Applied to Biological Models,", Chapman & Hall/CRC Mathematical and Computational Biology Series, (2007).

[23]

M. Y. Li, H. L. Smith and L. Wang, Global dynamics of an SEIR epidemic model with vertical transmission,, SIAM J. Appl. Math., 62 (2001), 58. doi: 10.1137/S0036139999359860.

[24]

M. Y. Li and J. S. Muldowney, A geometric approach to global-stability problems,, SIAM J. Math. Anal., 27 (1996), 1070. doi: 10.1137/S0036141094266449.

[25]

M. Y. Li and L. Wang, Global stability in some SEIR epidemic models,, in, 126 (2002), 295.

[26]

X.-Z. Li and L.-L. Zhou, Global stability of an SEIR epidemic model with vertical transmission and saturating contact rate,, Chaos Solitons Fractals, 40 (2009), 874. doi: 10.1016/j.chaos.2007.08.035.

[27]

Matlab. Release 13, The mathworks Inc.,, Natich, (2002).

[28]

E. Miller, J. Cradock-Watson and T. Pollock, Consequences of confirmed maternal rubella at successive stages of pregnancy,, Lancet, 320 (1982), 781. doi: 10.1016/S0140-6736(82)92677-0.

[29]

R. Morton and K. H. Wickwire, On the optimal control of a deterministic epidemic,, Advances in Appl. Probability, 6 (1974), 622. doi: 10.2307/1426183.

[30]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", Interscience Publishers John Wiley & Sons, (1962).

[31]

S. P. Sethi and P. W. Staats, Optimal control of some simple deterministic epidemic models,, J. Opl. Res. Soc., 29 (1978), 129.

[32]

L. Stone, R. Olinky and A. Huppert, Seasonal dynamics of recurrent epidemics,, Nature, 446 (2007), 533. doi: 10.1038/nature05638.

[33]

X. Yan and Y. Zou, Control of epidemics by quarantine and isolation strategies in highly mobile populations,, Int. J. Inform. Sys. Science, 5 (2009), 271.

[34]

K. H. Wickwire, Optimal isolation policies for deterministic and stochastic epidemics,, Math. Biosci., 26 (1975), 325. doi: 10.1016/0025-5564(75)90020-6.

[35]

World Health Organization, "Immunization Surveillance, Assessment and Monitoring. Data Statistics and Graphics,", Available from: \url{http://www.who.int/immunization_monitoring/data/en/} (Select Member State: China), ().

show all references

References:
[1]

R. M. Anderson and R. M. May, "Infectious Diseases in Humans: Dynamics and Control,", Oxford University Press, (1991).

[2]

E. Asano, L. J. Gross, S. Lenhart and L. A. Real, Optimal control of vaccine distribution in a rabies metapopulation model,, Math. Biosci. Engineering, 5 (2008), 219.

[3]

H. Behncke, Optimal control of deterministic epidemics,, Optim. Control Appl. Meth., 21 (2000), 269. doi: 10.1002/oca.678.

[4]

K. W. Blayneh, A. B. Gumel, S. Lenhart and T. Clayton, Backward bifurcation and optimal control in transmission dynamics of West Nile virus,, Bull. Math. Biol., 72 (2010), 1006. doi: 10.1007/s11538-009-9480-0.

[5]

C. Bowman and A. B. Gumel, Optimal vaccination strategies for an influenza-like illness in a heterogeneous population,, in, 410 (2006), 31.

[6]

F. Brauer, P. van den Driessche and J. Wu, editors, "Mathematical Epidemiology,", Lecture Notes in Mathematics, 1945 (2008).

[7]

B. Buonomo and D. Lacitignola, On the use of the geometric approach to global stability for three-dimensional ODE systems: A bilinear case,, J. Math. Anal. Appl., 348 (2008), 255. doi: 10.1016/j.jmaa.2008.07.021.

[8]

S. Busenberg and K. Cooke, "Vertically Transmitted Diseases. Models and Dynamics,", Biomathematics, 23 (1993).

[9]

V. Capasso, "Mathematical Structures of Epidemic Systems,", Lecture Notes in Biomath., 97 (1993).

[10]

World Health Organization, Western Pacific Region. Countries and Areas: China 2007., Available from:, \url{http://www.wpro.who.int/countries/2007/chn/}., ().

[11]

F. T. Cutts and E. Vynnycky, Modelling the incidence of congenital rubella syndrome in developing countries,, Int. J. Epidemiol., 28 (1999), 1176. doi: 10.1093/ije/28.6.1176.

[12]

A. d'Onofrio, Globally stable vaccine-induced eradication of horizontally and vertically transmitted infectious disease with periodic contact rates and disease-dependent demographic factors in the population,, Appl. Math. Comput., 140 (2003), 537. doi: 10.1016/S0096-3003(02)00251-5.

[13]

A. d'Onofrio, On pulse vaccination strategy in the SIR epidemic model with vertical transmission,, Appl. Math. Lett., 18 (2005), 729. doi: 10.1016/j.aml.2004.05.012.

[14]

L. Dontigny, M. Y. Arsenault, M. J. Martel, et al., Rubella in pregnancy, Society of Obstetricians and Gyneacologists of Canada clinical practice guidelines,, J. Obstet. Gynaecol. Can., 30 (2008), 152.

[15]

H. Gaff and E. Schaefer, Optimal control applied to vaccination and treatment strategies for various epidemiological models,, Math. Biosci. Eng., 6 (2009), 469. doi: 10.3934/mbe.2009.6.469.

[16]

L. Gao and H. Hethcote, Simulations of rubella vaccination strategies in China,, Math. Biosci., 202 (2006), 371. doi: 10.1016/j.mbs.2006.02.005.

[17]

K. Hattaf, M. Rachik, S. Saadi, Y. Tabit and N. Yousfi, Optimal control of tuberculosis with exogenous reinfection,, Appl. Math. Sci. (Ruse), 3 (2009), 231.

[18]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Rev. \textbf{42} (2000), 42 (2000), 599. doi: 10.1137/S0036144500371907.

[19]

H. R. Joshi, S. Lenhart, M. Y. Li and L. Wang, Optimal control methods applied to disease models,, in, 410 (2006), 187.

[20]

E. Jung, S. Iwami, Y. Takeuchi and Tae-Chang Jo, Optimal control strategy for prevention of avian influenza pandemic,, J. Theor. Biol., 260 (2009), 220. doi: 10.1016/j.jtbi.2009.05.031.

[21]

E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model,, Discrete Contin. Dyn. Syst. Ser. B, 2 (2002), 473. doi: 10.3934/dcdsb.2002.2.473.

[22]

S. Lenhart and J. T. Workman, "Optimal Control Applied to Biological Models,", Chapman & Hall/CRC Mathematical and Computational Biology Series, (2007).

[23]

M. Y. Li, H. L. Smith and L. Wang, Global dynamics of an SEIR epidemic model with vertical transmission,, SIAM J. Appl. Math., 62 (2001), 58. doi: 10.1137/S0036139999359860.

[24]

M. Y. Li and J. S. Muldowney, A geometric approach to global-stability problems,, SIAM J. Math. Anal., 27 (1996), 1070. doi: 10.1137/S0036141094266449.

[25]

M. Y. Li and L. Wang, Global stability in some SEIR epidemic models,, in, 126 (2002), 295.

[26]

X.-Z. Li and L.-L. Zhou, Global stability of an SEIR epidemic model with vertical transmission and saturating contact rate,, Chaos Solitons Fractals, 40 (2009), 874. doi: 10.1016/j.chaos.2007.08.035.

[27]

Matlab. Release 13, The mathworks Inc.,, Natich, (2002).

[28]

E. Miller, J. Cradock-Watson and T. Pollock, Consequences of confirmed maternal rubella at successive stages of pregnancy,, Lancet, 320 (1982), 781. doi: 10.1016/S0140-6736(82)92677-0.

[29]

R. Morton and K. H. Wickwire, On the optimal control of a deterministic epidemic,, Advances in Appl. Probability, 6 (1974), 622. doi: 10.2307/1426183.

[30]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", Interscience Publishers John Wiley & Sons, (1962).

[31]

S. P. Sethi and P. W. Staats, Optimal control of some simple deterministic epidemic models,, J. Opl. Res. Soc., 29 (1978), 129.

[32]

L. Stone, R. Olinky and A. Huppert, Seasonal dynamics of recurrent epidemics,, Nature, 446 (2007), 533. doi: 10.1038/nature05638.

[33]

X. Yan and Y. Zou, Control of epidemics by quarantine and isolation strategies in highly mobile populations,, Int. J. Inform. Sys. Science, 5 (2009), 271.

[34]

K. H. Wickwire, Optimal isolation policies for deterministic and stochastic epidemics,, Math. Biosci., 26 (1975), 325. doi: 10.1016/0025-5564(75)90020-6.

[35]

World Health Organization, "Immunization Surveillance, Assessment and Monitoring. Data Statistics and Graphics,", Available from: \url{http://www.who.int/immunization_monitoring/data/en/} (Select Member State: China), ().

[1]

Shujing Gao, Dehui Xie, Lansun Chen. Pulse vaccination strategy in a delayed sir epidemic model with vertical transmission. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 77-86. doi: 10.3934/dcdsb.2007.7.77

[2]

Hisashi Inaba. Mathematical analysis of an age-structured SIR epidemic model with vertical transmission. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 69-96. doi: 10.3934/dcdsb.2006.6.69

[3]

Chandrani Banerjee, Linda J. S. Allen, Jorge Salazar-Bravo. Models for an arenavirus infection in a rodent population: consequences of horizontal, vertical and sexual transmission. Mathematical Biosciences & Engineering, 2008, 5 (4) : 617-645. doi: 10.3934/mbe.2008.5.617

[4]

Toshikazu Kuniya, Mimmo Iannelli. $R_0$ and the global behavior of an age-structured SIS epidemic model with periodicity and vertical transmission. Mathematical Biosciences & Engineering, 2014, 11 (4) : 929-945. doi: 10.3934/mbe.2014.11.929

[5]

Liming Cai, Maia Martcheva, Xue-Zhi Li. Epidemic models with age of infection, indirect transmission and incomplete treatment. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2239-2265. doi: 10.3934/dcdsb.2013.18.2239

[6]

Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. Optimal control for an epidemic in populations of varying size. Conference Publications, 2015, 2015 (special) : 549-561. doi: 10.3934/proc.2015.0549

[7]

Majid Jaberi-Douraki, Seyed M. Moghadas. Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1045-1063. doi: 10.3934/mbe.2014.11.1045

[8]

Linhua Zhou, Meng Fan, Qiang Hou, Zhen Jin, Xiangdong Sun. Transmission dynamics and optimal control of brucellosis in Inner Mongolia of China. Mathematical Biosciences & Engineering, 2018, 15 (2) : 543-567. doi: 10.3934/mbe.2018025

[9]

Chunxiao Ding, Zhipeng Qiu, Huaiping Zhu. Multi-host transmission dynamics of schistosomiasis and its optimal control. Mathematical Biosciences & Engineering, 2015, 12 (5) : 983-1006. doi: 10.3934/mbe.2015.12.983

[10]

Sanjukta Hota, Folashade Agusto, Hem Raj Joshi, Suzanne Lenhart. Optimal control and stability analysis of an epidemic model with education campaign and treatment. Conference Publications, 2015, 2015 (special) : 621-634. doi: 10.3934/proc.2015.0621

[11]

Claus Kirchner, Michael Herty, Simone Göttlich, Axel Klar. Optimal control for continuous supply network models. Networks & Heterogeneous Media, 2006, 1 (4) : 675-688. doi: 10.3934/nhm.2006.1.675

[12]

Maria do Rosário de Pinho, Helmut Maurer, Hasnaa Zidani. Optimal control of normalized SIMR models with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 79-99. doi: 10.3934/dcdsb.2018006

[13]

Moatlhodi Kgosimore, Edward M. Lungu. The Effects of Vertical Transmission on the Spread of HIV/AIDS in the Presence of Treatment. Mathematical Biosciences & Engineering, 2006, 3 (2) : 297-312. doi: 10.3934/mbe.2006.3.297

[14]

Arnaud Ducrot, Michel Langlais, Pierre Magal. Qualitative analysis and travelling wave solutions for the SI model with vertical transmission. Communications on Pure & Applied Analysis, 2012, 11 (1) : 97-113. doi: 10.3934/cpaa.2012.11.97

[15]

Folashade B. Agusto. Optimal control and cost-effectiveness analysis of a three age-structured transmission dynamics of chikungunya virus. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 687-715. doi: 10.3934/dcdsb.2017034

[16]

Fred Brauer. Some simple epidemic models. Mathematical Biosciences & Engineering, 2006, 3 (1) : 1-15. doi: 10.3934/mbe.2006.3.1

[17]

Fred Brauer, Zhilan Feng, Carlos Castillo-Chávez. Discrete epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (1) : 1-15. doi: 10.3934/mbe.2010.7.1

[18]

Joaquim P. Mateus, Paulo Rebelo, Silvério Rosa, César M. Silva, Delfim F. M. Torres. Optimal control of non-autonomous SEIRS models with vaccination and treatment. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1179-1199. doi: 10.3934/dcdss.2018067

[19]

Heather Finotti, Suzanne Lenhart, Tuoc Van Phan. Optimal control of advective direction in reaction-diffusion population models. Evolution Equations & Control Theory, 2012, 1 (1) : 81-107. doi: 10.3934/eect.2012.1.81

[20]

Carsten Hartmann, Juan C. Latorre, Wei Zhang, Grigorios A. Pavliotis. Addendum to "Optimal control of multiscale systems using reduced-order models". Journal of Computational Dynamics, 2017, 4 (1&2) : 167-167. doi: 10.3934/jcd.2017006

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]