• Previous Article
    Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis
  • MBE Home
  • This Issue
  • Next Article
    Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy
2011, 8(2): 325-354. doi: 10.3934/mbe.2011.8.325

A model of competing saturable kinetic processes with application to the pharmacokinetics of the anticancer drug paclitaxel

1. 

Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2J1, Canada, Canada

2. 

Department of Experimental Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2J1, Canada

3. 

Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada

Received  March 2010 Revised  August 2010 Published  April 2011

A saturable multi-compartment pharmacokinetic model for the anti-cancer drug paclitaxel is proposed based on a meta-analysis of pharmacokinetic data published over the last two decades. We present and classify the results of time series for the drug concentration in the body to uncover the underlying power laws. Two dominant fractional power law exponents were found to characterize the tails of paclitaxel concentration-time curves. Short infusion times led to a power exponent of $-1.57 \pm 0.14$, while long infusion times resulted in tails with roughly twice the exponent. Curves following intermediate infusion times were characterized by two power laws. An initial segment with the larger slope was followed by a long-time tail characterized by the smaller exponent. The area under the curve and the maximum concentration exhibited a power law dependence on dose, both with compatible fractional power exponents. Computer simulations using the proposed model revealed that a two-compartment model with both saturable distribution and elimination can reproduce both the single and crossover power laws. Also, the nonlinear dose-dependence is correlated with the empirical power law tails. The longer the infusion time the better the drug delivery to the tumor compartment is a clinical recommendation we propose.
Citation: Rebeccah E. Marsh, Jack A. Tuszyński, Michael Sawyer, Kenneth J. E. Vos. A model of competing saturable kinetic processes with application to the pharmacokinetics of the anticancer drug paclitaxel. Mathematical Biosciences & Engineering, 2011, 8 (2) : 325-354. doi: 10.3934/mbe.2011.8.325
References:
[1]

R. Advani, G. A. Fisher, B. L. Lum, J. Hausdorff, J. Halsey, M. Litchman and B. I. Sikic, A phase I trial of doxorubicin, paclitaxel, and valspodar (PSC 833), a modulator of multidrug resistance,, Clin. Cancer Res., 7 (2001), 1221. Google Scholar

[2]

J. Anderson, S. B. Osborn, R. W. Tomlinson and M. A. Weinbren, Some applications of power law analysis to radioisotope studies in man,, Phys. Med. Biol., 8 (1963), 287. doi: 10.1088/0031-9155/8/3/305. Google Scholar

[3]

J. B. Bassingthwaighte and D. A. Beard, Fractal 15O-labeled water washout from the heart,, Circ. Res., 77 (1995), 1212. Google Scholar

[4]

D. A. Beard and J. B. Bassingthwaighte, Power-law kinetics of tracer washout from physiological systems,, Ann. Biomed. Eng., 26 (1998), 775. doi: 10.1114/1.105. Google Scholar

[5]

H. G. Boxenbaum, Pharmacokinetics tricks and traps: Flip-flop models,, J. Pharm. Pharm. Sci., 1 (1998), 90. Google Scholar

[6]

T. Brown, K. Havlin, G. Weiss, J. Cagnola, J. Koeller, J. Kuhn, J. Rizzo, J. Craig, J. Phillips and D. Von Hoff, A phase I trial of taxol given by a 6-hour intravenous infusion,, J. Clin. Oncol., 9 (1991), 1261. Google Scholar

[7]

P. Chelminiak, R. E. Marsh, J. A. Tuszyński, J. M. Dixon and K. J. E. Vos, Asymptotic time dependence in the fractal pharmacokinetics of a two-compartment model,, Phys. Rev. E, 72 (2005), 1. Google Scholar

[8]

B. Damascelli, G. Cantu, F. Mattavelli, P. Tamplenizza, P. Bidoli, E. Leo, F. Dosio, A. M. Cerrotta, G. Di Tolla, L. F. Frigerio, F. Garbagnati, R. Lanocita, A. Marchiano, G. Patelli, C. Spreafico, V. Ticha, V. Vespro and F. Zunino, Intraarterial chemotherapy with polyoxyethylated castor oil free paclitaxel, incorporated in albumin nanoparticles (ABI-007): Phase II study of patients with squamous cell carcinoma of the head and neck and anal canal: preliminary evidence of clinical activity,, Cancer, 92 (2001), 2592. doi: 10.1002/1097-0142(20011115)92:10<2592::AID-CNCR1612>3.0.CO;2-4. Google Scholar

[9]

A. Dokoumetzidis and P. Macheras, Fractional pharmacokinetics and pharmacodynamics,, J. of Pharmacokinetics and Pharmacodynamics, 36 (2009), 165. doi: 10.1007/s10928-009-9116-x. Google Scholar

[10]

A. Dokoumetzidis, R. Magin and P. Macheras, A commentary on fractionalization of multi-compartmental models,, J. of Pharmacokinetics and Pharmacodynamics, 37 (2010), 203. doi: 10.1007/s10928-010-9153-5. Google Scholar

[11]

F. Doz, J. C. Gentet, F. Pein, D. Frappaz, P. Chastagner, S. Moretti, G. Vassal, J. Arditti, O. Van Tellingen, A. Iliadis and J. Catalin, Phase I trial and pharmacological study of a 3-hour paclitaxel infusion in children with refractory solid tumors: A SFOP study,, British Journal of Cancer, 84 (2001), 604. doi: 10.1054/bjoc.2000.1637. Google Scholar

[12]

J. Fuite, R. Marsh and J. Tuszyński, Fractal pharmacokinetics of the drug mibefradil in the liver,, Phys. Rev. E, 66 (2002), 1. Google Scholar

[13]

H. Gelderblom, J. Verweij, D. M. van Zomeren, D. Buijs, L. Ouwens, K. Nooter, G. Stoter and A. Sparreboom, Influence of Cremophor EL on the bioavailability of intraperitoneal Paclitaxel,, Clin. Cancer Res., 8 (2002), 1237. Google Scholar

[14]

H. Gelderblom, S. D. Baker, A. Zhao, J. Verwij and A. Sparrreboom, Distribution of paclitaxel in plasma and cerebrospinal fluid,, Anti-cancer drugs, 14 (2003), 365. doi: 10.1097/00001813-200306000-00007. Google Scholar

[15]

K. Gelmon, E. Eisenhauer, C. Bryce, A. Tolcher, L. Mayer, E. Tomlinson, B. Zee, M. Blackstein, E. Tomiak, J. Yau, G. Batist, B. Fisher and J. Iglesias, Randomized phase II study of high-dose paclitaxel with or without amifostine in patients with metastatic breast cancer,, J. Clin. Oncol., 17 (1999), 3038. Google Scholar

[16]

L. Gianni, C. M. Kearns, A. Giani, G. Capri, L. Vigano, A. Lacatelli, G. Bonadonna and M. J. Egorin, Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans,, J. Clin. Oncol., 13 (1995), 180. Google Scholar

[17]

M. Gibaldi and D. Perrier, "Pharmacokinetics,", 2$^{nd}$ edition, (1982). Google Scholar

[18]

K. Gough, M. Hutchinson, O. Keene, B. Byrom, S. Ellis, L. Lacey and J. McKellar, Assessment of dose proportionality: report from the statisticians in the pharmaceutical industry/pharmacokinetics UK joint working party,, Drug Inf. J., 29 (1995), 1039. Google Scholar

[19]

A. Henningsson, M. O. Karlsson, L. Vigano, L. Gianni, J. Verweij and A. Sparreboom, Mechanism-based pharmacokinetic model for paclitaxel,, J. Clin. Oncol., 19 (2001), 4065. Google Scholar

[20]

M. T. Huizing, V. H. Misser, R. C. Pieters, W. W. ten Bokkel Huinink, C. H. Veenhof, J. B. Vermorken, H. M. Pinedo and J. H. Beijnen, Taxanes: A new class of antitumor agents,, Cancer Invest., 13 (1995), 381. doi: 10.3109/07357909509031919. Google Scholar

[21]

J. A. Jacquez, "Compartmental Analysis in Biology and Medicine,", BioMedware, (1996). Google Scholar

[22]

M. A. Jordan, R. J. Toso, D. Thrower and D. L. Wilson, Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations,, Proc. Natl. Acad. Sci. USA, 102 (1993), 9552. doi: 10.1073/pnas.90.20.9552. Google Scholar

[23]

M. A. Jordon and L. Wilson, Taxane Anticancer Agents: Basic Science and Current Status,, in, (1995), 138. Google Scholar

[24]

M. A. Jordan, Mechanism of action of antitumor drugs that interact with microtubules and tubulin,, Curr. Med. Chem. Anti-Canc. Agents, 2 (2002), 1. Google Scholar

[25]

M. O. Karlsson, V. Molnar, A. Freijs, P. Nygren, J. Bergh and R. Larsson, Pharmacokinetic models for the saturable distribution of paclitaxel,, Drug Metab. Dispos., 27 (1999), 1220. Google Scholar

[26]

C. M. Kearns, L. Gianni and M. J. Egorin, Paclitaxel pharmacokinetics and pharmaco-dynamics,, Semin. Oncol., 22 (1995), 16. Google Scholar

[27]

T. Y. Kim, D. W. Kim, J. Y. Chung, S. G. Shin, S. C. Kim, D. S. Heo, N. K. Kim and Y. J. Bang, Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies,, Clin. Cancer Res., 10 (2004), 3708. doi: 10.1158/1078-0432.CCR-03-0655. Google Scholar

[28]

K. Kosmidis, V. Karalis, P. Argyrakis and P. Macheras, Michaelis-Menten kinetics under spatially constrained conditions: Application to mibefradil pharmacokinetics,, Biophys. J., 87 (2004), 1498. doi: 10.1529/biophysj.104.042143. Google Scholar

[29]

M. Lopez-Quintela and J. Casado, Revision of the methodology in enzyme kinetics: A fractal approach,, J. Theor. Biol., 139 (1989), 129. doi: 10.1016/S0022-5193(89)80062-1. Google Scholar

[30]

T. M. Ludden, S. L. Beal and L. B. Sheiner, Comparison of the akaike information criterion, the Schwartz criterion and the F-test as guides to model selection,, J. Pharmacokinet. Biopharm., 22 (1994), 431. doi: 10.1007/BF02353864. Google Scholar

[31]

P. Macheras, A fractal approach to heterogeneous drug distribution: Calcium pharmacokinetics,, Pharm. Res., 13 (1996), 663. doi: 10.1023/A:1016031129053. Google Scholar

[32]

H. Maier-Lenz, B. Hauns, B. Haering, J. Koetting, K. Mross, C. Unger, T. Bauknecht, A. du Bois, H. G. Meerpohl, N. Hollaender and K. Diergarten, Phase I study of paclitaxel administered as a 1-hour infusion: Toxicity and pharmacokinetics,, Semin. Oncol., 24 (1997), 16. Google Scholar

[33]

R. E. Marsh and J. A. Tuszyński, Fractal Michaelis-Menten kinetics under steady state conditions: Application to mibefradil,, Pharm. Res., 12 (2006), 2760. doi: 10.1007/s11095-006-9090-6. Google Scholar

[34]

R. E. Marsh, J. A. Tuszyński, M. B. Sawyer and K. J. E. Vos, Emergence of power laws in the pharmacokientics of paclitaxel due to competing saturable processes,, J. Pharm. Pharmaceut. Sci., 11 (2008), 77. Google Scholar

[35]

L. Michaelis and M. L. Menten, Die kinetik der invertinwirkung,, Biochem. Z., 49 (1913), 333. Google Scholar

[36]

B. Monsarrat, E. Mariel, S. Cros, M. Gares, D. Guenard, F. Gueritte-Voegelein and M. Wright, Taxol metabolism. Isolation and identification of three major metabolites of taxol in rat bile,, Drug Metab. Dispos., 18 (1990), 895. Google Scholar

[37]

T. Mori, Y. Kinoshita, A. Watanabe, T. Yamaguchi, K. Hosokawa and H. Honjo, Retention of paclitaxel in cancer cells for 1 week in vivo and in vitro,, Cancer Chemother. Pharmacol., 58 (2006), 665. doi: 10.1007/s00280-006-0209-6. Google Scholar

[38]

K. Mross and N. Hollander and B. Hauns and M. Schumacher and H. Maier-Lenz, The pharmacokinetics of a 1-h paclitaxel infusion,, Cancer Chemother. Pharmacol., 45 (2000), 463. doi: 10.1007/s002800051020. Google Scholar

[39]

V. R. Nannan Panday, R. de Wit, J. H. Schornagel, M. Schot, H. Rosing, J. Lieverst, W. W. ten Bokkel Huinink, J. H. Schellens and J. H. Beijnen, Pharmacokinetics of paclitaxel administered in combination with cisplatin, etoposide and bleomycin in patients with advanced solid tumours,, Cancer Chemother. Pharmacol., 44 (1999), 349. doi: 10.1007/s002800050988. Google Scholar

[40]

J. H. Nettles, H. Li, B. Cornett, J. M. Krahn, J. P. Snyder and K. H. Downing, The binding mode of epothilone A on alpha, beta-tubulin by electron crystallography,, Science, 305 (2004), 866. doi: 10.1126/science.1099190. Google Scholar

[41]

W. P. Norris, S. A. Tyler and A. M. Brues, Retention of radioactive bone-seekers,, Science, 128 (1958), 456. doi: 10.1126/science.128.3322.456. Google Scholar

[42]

K. H. Norwich and S. Siu, Power functions in physiology and pharmacology,, J. Theor. Biol., 95 (1982), 387. doi: 10.1016/0022-5193(82)90253-3. Google Scholar

[43]

T. Ohtsu, Y. Sasaki, T. Tamura, Y. Miyata, H. Nakanomyo, Y. Nishiwaki and N. Saijo, Clinical pharmacokinetics and pharmacodynamics of paclitaxel: A 3-hour infusion versus a 24-hour infusion,, Clin. Cancer Res., 1 (1995), 599. Google Scholar

[44]

K. P. Papadopoulos, M. J. Egorin, M. Huang, A. Troxel, E. Kaufman, C. Balmaceda, L. T. Vahdat and C. S. Hesdorffer, The pharmacokinetics and pharmacodynamics of high-dose paclitaxel monotherapy (825 mg/m2 continuous infusion over 24h) with hematopoietic support in women with metastatic breast cancer,, Cancer Chemother. Pharmacol., 47 (2001), 45. doi: 10.1007/s002800000193. Google Scholar

[45]

J. Parness and S. B. Horwitz, Taxol binds to polymerized tubulin in vitro,, J. Cell Biol., 91 (1981), 479. doi: 10.1083/jcb.91.2.479. Google Scholar

[46]

A. Patnaik, E. Warner, M. Michael, M. J. Egorin, M. J. Moore, L. L. Siu, P. M. Fracasso, S. Rivkin, I. Kerr, M. Litchman and A. M. Oza, Phase I dose-finding and pharmacokinetic study of paclitaxel and carboplatin with oral valspodar in patients with advanced solid tumors,, J. Clin. Oncol., 18 (2000), 3677. Google Scholar

[47]

F. Pellegrini and D. R. Budman, Review: Tubulin function, action of antitubulin drugs, and new drug development,, Cancer Invest., 23 (2005), 264. doi: 10.1081/CNV-200055970. Google Scholar

[48]

W. Press, "Numerical Recipes in C: The Art of Scientific Computing,", Cambridge University Press, (1992). Google Scholar

[49]

D. M. Robinson and G. M. Keating, Albumin-bound paclitaxel inmetastatic breast cancer drugs,, Drugs, 66 (2006), 941. doi: 10.2165/00003495-200666070-00007. Google Scholar

[50]

E. K. Rowinsky, P. J. Burke, J. E. Karp, R. W. Tucker, D. S. Ettinger and R. C. Donehower, Phase I and pharmacodynamic study of taxol in refractory acute leukemias,, Cancer Res., 49 (1989), 4640. Google Scholar

[51]

E. K. Rowinsky, M. Wright, B. Monsarrat, G. J. Lesser and R. C. Donehower, Taxol: Pharmacology, metabolism and clinical implications,, Cancer Surv., 17 (1993), 283. Google Scholar

[52]

O. Soepenberg, A. Sparreboom, M. J. de Jonge, A. S. Planting, G. de Heus, W. J. Loos, C. M. Hartman, C. Bowden and J. Verweij, Real-time pharmacokinetics guiding clinical decisions; phase i study of a weekly schedule of liposome encapsulated paclitaxel in patients with solid tumours,, Eur. J. Cancer, 40 (2004), 681. doi: 10.1016/j.ejca.2003.11.027. Google Scholar

[53]

D. S. Sonnichsen, C. A. Hurwitz, C. B. Pratt, J. J. Shuster and M. V. Relling, Saturable pharmacokinetics and paclitaxel pharmacodynamics in children with solid tumors,, J. Clin. Oncol., 12 (1994), 532. Google Scholar

[54]

C. Sottani, C. Minoia, M. D'Incalci, M. Paganini and M. Zucchetti, High-performance liquid chromatography tandem mass spectrometry procedure with automated solid phase extraction sample preparation for the quantitative determination of paclitaxel (taxol) in humanplasma,, Rapid Commun. Mass Spectrom., 12 (1998), 251. doi: 10.1002/(SICI)1097-0231(19980314)12:5<251::AID-RCM145>3.0.CO;2-Z. Google Scholar

[55]

A. Sparreboom, L. van Zuylen, E. Brouwer, W. J. Loos, P. de Bruijn, H. Gelderblom, M. Pillay, K. Nooter, G. Stoter and J. Verweij, Cremophor EL-mediated alteration of paclitaxel distribution in human blood: Clinical pharmacokinetic implications,, Cancer Res., 59 (1999), 1454. Google Scholar

[56]

L. van Zuylen, M. O. Karlsson, J. Verweij, E. Brouwer, P. de Bruijn, K. Nooter, G. Stoter and A. Sparreboom, Pharmacokinetic modeling of paclitaxel encapsulation in cremophor EL micelles,, Cancer Chemother. Pharmacol., 47 (2001), 309. doi: 10.1007/s002800000215. Google Scholar

[57]

L. van Zuylen, J. Verweij and A. Sparreboom, Role of formulation vehicles in taxane pharmacology,, Invest. New Drugs, 19 (2001), 125. doi: 10.1023/A:1010618632738. Google Scholar

[58]

D. Verotta, Fractional compartmental models and multi-term Mittag-Leffler response functions,, Journal of Pharmacokinetics and Pharmacodynamics, 37 (2010), 209. doi: 10.1007/s10928-010-9155-3. Google Scholar

[59]

D. Verotta, Fractional dynamics pharmacokinetics-pharmacodynamic models,, Journal of Pharmacokinetics and Pharmacodynamics, 37 (2010), 257. doi: 10.1007/s10928-010-9159-z. Google Scholar

[60]

J. Verweij, M. Clavel and B. Chevalier, Paclitaxel (taxol) and docetaxel (taxotere): Not simply two of a kind,, Annals of Oncology, 5 (1994), 495. Google Scholar

[61]

M. Weiss, Use of gamma distributed residence times in pharmacokinetics,, Eur. J. Clin. Pharmacol., 25 (1983), 695. doi: 10.1007/BF00542361. Google Scholar

[62]

P. H. Wiernik, E. L. Schwartz, J. J. Strauman, J. P. Dutcher, R. B. Lipton and E. Paietta, Phase I clinical and pharmacokinetic study of Taxol,, Cancer Res., 47 (1987), 2486. Google Scholar

[63]

P. H. Wiernik, E. L. Schwartz, A. Einzig, J. J. Strauman, R. B. Lipton and J. P. Dutcher, Phase I trial of taxol given as a 24-hour infusion every 21 days: Responses observed in metastatic melanoma,, J. Clin. Oncol., 5 (1987), 1232. Google Scholar

[64]

M. E. Wise, S. B. Osborn, J. Anderson and R. W. S. Tomlinson, A stochastic model for turnover of radiocalcium based on the observed power laws,, Math. Biosci. l, 2 (1968), 199. doi: 10.1016/0025-5564(68)90019-9. Google Scholar

[65]

M. E. Wise, The evidence against compartments,, Biometrics, 27 (1971). Google Scholar

[66]

M. E. Wise, Interpreting both short and long-term power laws in physiological clearance curves,, Math. Biosci., 20 (1974), 327. doi: 10.1016/0025-5564(74)90008-X. Google Scholar

[67]

M. H. Woo, D. Gregornik, P. D. Shearer, W. H. Meyer and M. V. Relling, Pharmacokinetics of paclitaxel in an anephric patient,, Cancer Chemother. Pharmacol., 43 (1999), 92. doi: 10.1007/s002800050868. Google Scholar

show all references

References:
[1]

R. Advani, G. A. Fisher, B. L. Lum, J. Hausdorff, J. Halsey, M. Litchman and B. I. Sikic, A phase I trial of doxorubicin, paclitaxel, and valspodar (PSC 833), a modulator of multidrug resistance,, Clin. Cancer Res., 7 (2001), 1221. Google Scholar

[2]

J. Anderson, S. B. Osborn, R. W. Tomlinson and M. A. Weinbren, Some applications of power law analysis to radioisotope studies in man,, Phys. Med. Biol., 8 (1963), 287. doi: 10.1088/0031-9155/8/3/305. Google Scholar

[3]

J. B. Bassingthwaighte and D. A. Beard, Fractal 15O-labeled water washout from the heart,, Circ. Res., 77 (1995), 1212. Google Scholar

[4]

D. A. Beard and J. B. Bassingthwaighte, Power-law kinetics of tracer washout from physiological systems,, Ann. Biomed. Eng., 26 (1998), 775. doi: 10.1114/1.105. Google Scholar

[5]

H. G. Boxenbaum, Pharmacokinetics tricks and traps: Flip-flop models,, J. Pharm. Pharm. Sci., 1 (1998), 90. Google Scholar

[6]

T. Brown, K. Havlin, G. Weiss, J. Cagnola, J. Koeller, J. Kuhn, J. Rizzo, J. Craig, J. Phillips and D. Von Hoff, A phase I trial of taxol given by a 6-hour intravenous infusion,, J. Clin. Oncol., 9 (1991), 1261. Google Scholar

[7]

P. Chelminiak, R. E. Marsh, J. A. Tuszyński, J. M. Dixon and K. J. E. Vos, Asymptotic time dependence in the fractal pharmacokinetics of a two-compartment model,, Phys. Rev. E, 72 (2005), 1. Google Scholar

[8]

B. Damascelli, G. Cantu, F. Mattavelli, P. Tamplenizza, P. Bidoli, E. Leo, F. Dosio, A. M. Cerrotta, G. Di Tolla, L. F. Frigerio, F. Garbagnati, R. Lanocita, A. Marchiano, G. Patelli, C. Spreafico, V. Ticha, V. Vespro and F. Zunino, Intraarterial chemotherapy with polyoxyethylated castor oil free paclitaxel, incorporated in albumin nanoparticles (ABI-007): Phase II study of patients with squamous cell carcinoma of the head and neck and anal canal: preliminary evidence of clinical activity,, Cancer, 92 (2001), 2592. doi: 10.1002/1097-0142(20011115)92:10<2592::AID-CNCR1612>3.0.CO;2-4. Google Scholar

[9]

A. Dokoumetzidis and P. Macheras, Fractional pharmacokinetics and pharmacodynamics,, J. of Pharmacokinetics and Pharmacodynamics, 36 (2009), 165. doi: 10.1007/s10928-009-9116-x. Google Scholar

[10]

A. Dokoumetzidis, R. Magin and P. Macheras, A commentary on fractionalization of multi-compartmental models,, J. of Pharmacokinetics and Pharmacodynamics, 37 (2010), 203. doi: 10.1007/s10928-010-9153-5. Google Scholar

[11]

F. Doz, J. C. Gentet, F. Pein, D. Frappaz, P. Chastagner, S. Moretti, G. Vassal, J. Arditti, O. Van Tellingen, A. Iliadis and J. Catalin, Phase I trial and pharmacological study of a 3-hour paclitaxel infusion in children with refractory solid tumors: A SFOP study,, British Journal of Cancer, 84 (2001), 604. doi: 10.1054/bjoc.2000.1637. Google Scholar

[12]

J. Fuite, R. Marsh and J. Tuszyński, Fractal pharmacokinetics of the drug mibefradil in the liver,, Phys. Rev. E, 66 (2002), 1. Google Scholar

[13]

H. Gelderblom, J. Verweij, D. M. van Zomeren, D. Buijs, L. Ouwens, K. Nooter, G. Stoter and A. Sparreboom, Influence of Cremophor EL on the bioavailability of intraperitoneal Paclitaxel,, Clin. Cancer Res., 8 (2002), 1237. Google Scholar

[14]

H. Gelderblom, S. D. Baker, A. Zhao, J. Verwij and A. Sparrreboom, Distribution of paclitaxel in plasma and cerebrospinal fluid,, Anti-cancer drugs, 14 (2003), 365. doi: 10.1097/00001813-200306000-00007. Google Scholar

[15]

K. Gelmon, E. Eisenhauer, C. Bryce, A. Tolcher, L. Mayer, E. Tomlinson, B. Zee, M. Blackstein, E. Tomiak, J. Yau, G. Batist, B. Fisher and J. Iglesias, Randomized phase II study of high-dose paclitaxel with or without amifostine in patients with metastatic breast cancer,, J. Clin. Oncol., 17 (1999), 3038. Google Scholar

[16]

L. Gianni, C. M. Kearns, A. Giani, G. Capri, L. Vigano, A. Lacatelli, G. Bonadonna and M. J. Egorin, Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans,, J. Clin. Oncol., 13 (1995), 180. Google Scholar

[17]

M. Gibaldi and D. Perrier, "Pharmacokinetics,", 2$^{nd}$ edition, (1982). Google Scholar

[18]

K. Gough, M. Hutchinson, O. Keene, B. Byrom, S. Ellis, L. Lacey and J. McKellar, Assessment of dose proportionality: report from the statisticians in the pharmaceutical industry/pharmacokinetics UK joint working party,, Drug Inf. J., 29 (1995), 1039. Google Scholar

[19]

A. Henningsson, M. O. Karlsson, L. Vigano, L. Gianni, J. Verweij and A. Sparreboom, Mechanism-based pharmacokinetic model for paclitaxel,, J. Clin. Oncol., 19 (2001), 4065. Google Scholar

[20]

M. T. Huizing, V. H. Misser, R. C. Pieters, W. W. ten Bokkel Huinink, C. H. Veenhof, J. B. Vermorken, H. M. Pinedo and J. H. Beijnen, Taxanes: A new class of antitumor agents,, Cancer Invest., 13 (1995), 381. doi: 10.3109/07357909509031919. Google Scholar

[21]

J. A. Jacquez, "Compartmental Analysis in Biology and Medicine,", BioMedware, (1996). Google Scholar

[22]

M. A. Jordan, R. J. Toso, D. Thrower and D. L. Wilson, Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations,, Proc. Natl. Acad. Sci. USA, 102 (1993), 9552. doi: 10.1073/pnas.90.20.9552. Google Scholar

[23]

M. A. Jordon and L. Wilson, Taxane Anticancer Agents: Basic Science and Current Status,, in, (1995), 138. Google Scholar

[24]

M. A. Jordan, Mechanism of action of antitumor drugs that interact with microtubules and tubulin,, Curr. Med. Chem. Anti-Canc. Agents, 2 (2002), 1. Google Scholar

[25]

M. O. Karlsson, V. Molnar, A. Freijs, P. Nygren, J. Bergh and R. Larsson, Pharmacokinetic models for the saturable distribution of paclitaxel,, Drug Metab. Dispos., 27 (1999), 1220. Google Scholar

[26]

C. M. Kearns, L. Gianni and M. J. Egorin, Paclitaxel pharmacokinetics and pharmaco-dynamics,, Semin. Oncol., 22 (1995), 16. Google Scholar

[27]

T. Y. Kim, D. W. Kim, J. Y. Chung, S. G. Shin, S. C. Kim, D. S. Heo, N. K. Kim and Y. J. Bang, Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies,, Clin. Cancer Res., 10 (2004), 3708. doi: 10.1158/1078-0432.CCR-03-0655. Google Scholar

[28]

K. Kosmidis, V. Karalis, P. Argyrakis and P. Macheras, Michaelis-Menten kinetics under spatially constrained conditions: Application to mibefradil pharmacokinetics,, Biophys. J., 87 (2004), 1498. doi: 10.1529/biophysj.104.042143. Google Scholar

[29]

M. Lopez-Quintela and J. Casado, Revision of the methodology in enzyme kinetics: A fractal approach,, J. Theor. Biol., 139 (1989), 129. doi: 10.1016/S0022-5193(89)80062-1. Google Scholar

[30]

T. M. Ludden, S. L. Beal and L. B. Sheiner, Comparison of the akaike information criterion, the Schwartz criterion and the F-test as guides to model selection,, J. Pharmacokinet. Biopharm., 22 (1994), 431. doi: 10.1007/BF02353864. Google Scholar

[31]

P. Macheras, A fractal approach to heterogeneous drug distribution: Calcium pharmacokinetics,, Pharm. Res., 13 (1996), 663. doi: 10.1023/A:1016031129053. Google Scholar

[32]

H. Maier-Lenz, B. Hauns, B. Haering, J. Koetting, K. Mross, C. Unger, T. Bauknecht, A. du Bois, H. G. Meerpohl, N. Hollaender and K. Diergarten, Phase I study of paclitaxel administered as a 1-hour infusion: Toxicity and pharmacokinetics,, Semin. Oncol., 24 (1997), 16. Google Scholar

[33]

R. E. Marsh and J. A. Tuszyński, Fractal Michaelis-Menten kinetics under steady state conditions: Application to mibefradil,, Pharm. Res., 12 (2006), 2760. doi: 10.1007/s11095-006-9090-6. Google Scholar

[34]

R. E. Marsh, J. A. Tuszyński, M. B. Sawyer and K. J. E. Vos, Emergence of power laws in the pharmacokientics of paclitaxel due to competing saturable processes,, J. Pharm. Pharmaceut. Sci., 11 (2008), 77. Google Scholar

[35]

L. Michaelis and M. L. Menten, Die kinetik der invertinwirkung,, Biochem. Z., 49 (1913), 333. Google Scholar

[36]

B. Monsarrat, E. Mariel, S. Cros, M. Gares, D. Guenard, F. Gueritte-Voegelein and M. Wright, Taxol metabolism. Isolation and identification of three major metabolites of taxol in rat bile,, Drug Metab. Dispos., 18 (1990), 895. Google Scholar

[37]

T. Mori, Y. Kinoshita, A. Watanabe, T. Yamaguchi, K. Hosokawa and H. Honjo, Retention of paclitaxel in cancer cells for 1 week in vivo and in vitro,, Cancer Chemother. Pharmacol., 58 (2006), 665. doi: 10.1007/s00280-006-0209-6. Google Scholar

[38]

K. Mross and N. Hollander and B. Hauns and M. Schumacher and H. Maier-Lenz, The pharmacokinetics of a 1-h paclitaxel infusion,, Cancer Chemother. Pharmacol., 45 (2000), 463. doi: 10.1007/s002800051020. Google Scholar

[39]

V. R. Nannan Panday, R. de Wit, J. H. Schornagel, M. Schot, H. Rosing, J. Lieverst, W. W. ten Bokkel Huinink, J. H. Schellens and J. H. Beijnen, Pharmacokinetics of paclitaxel administered in combination with cisplatin, etoposide and bleomycin in patients with advanced solid tumours,, Cancer Chemother. Pharmacol., 44 (1999), 349. doi: 10.1007/s002800050988. Google Scholar

[40]

J. H. Nettles, H. Li, B. Cornett, J. M. Krahn, J. P. Snyder and K. H. Downing, The binding mode of epothilone A on alpha, beta-tubulin by electron crystallography,, Science, 305 (2004), 866. doi: 10.1126/science.1099190. Google Scholar

[41]

W. P. Norris, S. A. Tyler and A. M. Brues, Retention of radioactive bone-seekers,, Science, 128 (1958), 456. doi: 10.1126/science.128.3322.456. Google Scholar

[42]

K. H. Norwich and S. Siu, Power functions in physiology and pharmacology,, J. Theor. Biol., 95 (1982), 387. doi: 10.1016/0022-5193(82)90253-3. Google Scholar

[43]

T. Ohtsu, Y. Sasaki, T. Tamura, Y. Miyata, H. Nakanomyo, Y. Nishiwaki and N. Saijo, Clinical pharmacokinetics and pharmacodynamics of paclitaxel: A 3-hour infusion versus a 24-hour infusion,, Clin. Cancer Res., 1 (1995), 599. Google Scholar

[44]

K. P. Papadopoulos, M. J. Egorin, M. Huang, A. Troxel, E. Kaufman, C. Balmaceda, L. T. Vahdat and C. S. Hesdorffer, The pharmacokinetics and pharmacodynamics of high-dose paclitaxel monotherapy (825 mg/m2 continuous infusion over 24h) with hematopoietic support in women with metastatic breast cancer,, Cancer Chemother. Pharmacol., 47 (2001), 45. doi: 10.1007/s002800000193. Google Scholar

[45]

J. Parness and S. B. Horwitz, Taxol binds to polymerized tubulin in vitro,, J. Cell Biol., 91 (1981), 479. doi: 10.1083/jcb.91.2.479. Google Scholar

[46]

A. Patnaik, E. Warner, M. Michael, M. J. Egorin, M. J. Moore, L. L. Siu, P. M. Fracasso, S. Rivkin, I. Kerr, M. Litchman and A. M. Oza, Phase I dose-finding and pharmacokinetic study of paclitaxel and carboplatin with oral valspodar in patients with advanced solid tumors,, J. Clin. Oncol., 18 (2000), 3677. Google Scholar

[47]

F. Pellegrini and D. R. Budman, Review: Tubulin function, action of antitubulin drugs, and new drug development,, Cancer Invest., 23 (2005), 264. doi: 10.1081/CNV-200055970. Google Scholar

[48]

W. Press, "Numerical Recipes in C: The Art of Scientific Computing,", Cambridge University Press, (1992). Google Scholar

[49]

D. M. Robinson and G. M. Keating, Albumin-bound paclitaxel inmetastatic breast cancer drugs,, Drugs, 66 (2006), 941. doi: 10.2165/00003495-200666070-00007. Google Scholar

[50]

E. K. Rowinsky, P. J. Burke, J. E. Karp, R. W. Tucker, D. S. Ettinger and R. C. Donehower, Phase I and pharmacodynamic study of taxol in refractory acute leukemias,, Cancer Res., 49 (1989), 4640. Google Scholar

[51]

E. K. Rowinsky, M. Wright, B. Monsarrat, G. J. Lesser and R. C. Donehower, Taxol: Pharmacology, metabolism and clinical implications,, Cancer Surv., 17 (1993), 283. Google Scholar

[52]

O. Soepenberg, A. Sparreboom, M. J. de Jonge, A. S. Planting, G. de Heus, W. J. Loos, C. M. Hartman, C. Bowden and J. Verweij, Real-time pharmacokinetics guiding clinical decisions; phase i study of a weekly schedule of liposome encapsulated paclitaxel in patients with solid tumours,, Eur. J. Cancer, 40 (2004), 681. doi: 10.1016/j.ejca.2003.11.027. Google Scholar

[53]

D. S. Sonnichsen, C. A. Hurwitz, C. B. Pratt, J. J. Shuster and M. V. Relling, Saturable pharmacokinetics and paclitaxel pharmacodynamics in children with solid tumors,, J. Clin. Oncol., 12 (1994), 532. Google Scholar

[54]

C. Sottani, C. Minoia, M. D'Incalci, M. Paganini and M. Zucchetti, High-performance liquid chromatography tandem mass spectrometry procedure with automated solid phase extraction sample preparation for the quantitative determination of paclitaxel (taxol) in humanplasma,, Rapid Commun. Mass Spectrom., 12 (1998), 251. doi: 10.1002/(SICI)1097-0231(19980314)12:5<251::AID-RCM145>3.0.CO;2-Z. Google Scholar

[55]

A. Sparreboom, L. van Zuylen, E. Brouwer, W. J. Loos, P. de Bruijn, H. Gelderblom, M. Pillay, K. Nooter, G. Stoter and J. Verweij, Cremophor EL-mediated alteration of paclitaxel distribution in human blood: Clinical pharmacokinetic implications,, Cancer Res., 59 (1999), 1454. Google Scholar

[56]

L. van Zuylen, M. O. Karlsson, J. Verweij, E. Brouwer, P. de Bruijn, K. Nooter, G. Stoter and A. Sparreboom, Pharmacokinetic modeling of paclitaxel encapsulation in cremophor EL micelles,, Cancer Chemother. Pharmacol., 47 (2001), 309. doi: 10.1007/s002800000215. Google Scholar

[57]

L. van Zuylen, J. Verweij and A. Sparreboom, Role of formulation vehicles in taxane pharmacology,, Invest. New Drugs, 19 (2001), 125. doi: 10.1023/A:1010618632738. Google Scholar

[58]

D. Verotta, Fractional compartmental models and multi-term Mittag-Leffler response functions,, Journal of Pharmacokinetics and Pharmacodynamics, 37 (2010), 209. doi: 10.1007/s10928-010-9155-3. Google Scholar

[59]

D. Verotta, Fractional dynamics pharmacokinetics-pharmacodynamic models,, Journal of Pharmacokinetics and Pharmacodynamics, 37 (2010), 257. doi: 10.1007/s10928-010-9159-z. Google Scholar

[60]

J. Verweij, M. Clavel and B. Chevalier, Paclitaxel (taxol) and docetaxel (taxotere): Not simply two of a kind,, Annals of Oncology, 5 (1994), 495. Google Scholar

[61]

M. Weiss, Use of gamma distributed residence times in pharmacokinetics,, Eur. J. Clin. Pharmacol., 25 (1983), 695. doi: 10.1007/BF00542361. Google Scholar

[62]

P. H. Wiernik, E. L. Schwartz, J. J. Strauman, J. P. Dutcher, R. B. Lipton and E. Paietta, Phase I clinical and pharmacokinetic study of Taxol,, Cancer Res., 47 (1987), 2486. Google Scholar

[63]

P. H. Wiernik, E. L. Schwartz, A. Einzig, J. J. Strauman, R. B. Lipton and J. P. Dutcher, Phase I trial of taxol given as a 24-hour infusion every 21 days: Responses observed in metastatic melanoma,, J. Clin. Oncol., 5 (1987), 1232. Google Scholar

[64]

M. E. Wise, S. B. Osborn, J. Anderson and R. W. S. Tomlinson, A stochastic model for turnover of radiocalcium based on the observed power laws,, Math. Biosci. l, 2 (1968), 199. doi: 10.1016/0025-5564(68)90019-9. Google Scholar

[65]

M. E. Wise, The evidence against compartments,, Biometrics, 27 (1971). Google Scholar

[66]

M. E. Wise, Interpreting both short and long-term power laws in physiological clearance curves,, Math. Biosci., 20 (1974), 327. doi: 10.1016/0025-5564(74)90008-X. Google Scholar

[67]

M. H. Woo, D. Gregornik, P. D. Shearer, W. H. Meyer and M. V. Relling, Pharmacokinetics of paclitaxel in an anephric patient,, Cancer Chemother. Pharmacol., 43 (1999), 92. doi: 10.1007/s002800050868. Google Scholar

[1]

Urszula Ledzewicz, Helen Moore. Optimal control applied to a generalized Michaelis-Menten model of CML therapy. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 331-346. doi: 10.3934/dcdsb.2018022

[2]

Karl Peter Hadeler. Michaelis-Menten kinetics, the operator-repressor system, and least squares approaches. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1541-1560. doi: 10.3934/mbe.2013.10.1541

[3]

Abderrahman Iggidr, Josepha Mbang, Gauthier Sallet, Jean-Jules Tewa. Multi-compartment models. Conference Publications, 2007, 2007 (Special) : 506-519. doi: 10.3934/proc.2007.2007.506

[4]

Maciej Leszczyński, Urszula Ledzewicz, Heinz Schättler. Optimal control for a mathematical model for anti-angiogenic treatment with Michaelis-Menten pharmacodynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2315-2334. doi: 10.3934/dcdsb.2019097

[5]

Jagadeesh R. Sonnad, Chetan T. Goudar. Solution of the Michaelis-Menten equation using the decomposition method. Mathematical Biosciences & Engineering, 2009, 6 (1) : 173-188. doi: 10.3934/mbe.2009.6.173

[6]

Liang Zhao. New developments in using stochastic recipe for multi-compartment model: Inter-compartment traveling route, residence time, and exponential convolution expansion. Mathematical Biosciences & Engineering, 2009, 6 (3) : 663-682. doi: 10.3934/mbe.2009.6.663

[7]

Arturo Alvarez-Arenas, Konstantin E. Starkov, Gabriel F. Calvo, Juan Belmonte-Beitia. Ultimate dynamics and optimal control of a multi-compartment model of tumor resistance to chemotherapy. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2017-2038. doi: 10.3934/dcdsb.2019082

[8]

Zheng Dai, I.G. Rosen, Chuming Wang, Nancy Barnett, Susan E. Luczak. Using drinking data and pharmacokinetic modeling to calibrate transport model and blind deconvolution based data analysis software for transdermal alcohol biosensors. Mathematical Biosciences & Engineering, 2016, 13 (5) : 911-934. doi: 10.3934/mbe.2016023

[9]

Jeng-Huei Chen. An analysis of functional curability on HIV infection models with Michaelis-Menten-type immune response and its generalization. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2089-2120. doi: 10.3934/dcdsb.2017086

[10]

Michele L. Joyner, Cammey C. Manning, Whitney Forbes, Michelle Maiden, Ariel N. Nikas. A physiologically-based pharmacokinetic model for the antibiotic ertapenem. Mathematical Biosciences & Engineering, 2016, 13 (1) : 119-133. doi: 10.3934/mbe.2016.13.119

[11]

Robert P. Gilbert, Philippe Guyenne, Ying Liu. Modeling of the kinetics of vitamin D$_3$ in osteoblastic cells. Mathematical Biosciences & Engineering, 2013, 10 (2) : 319-344. doi: 10.3934/mbe.2013.10.319

[12]

Nicolas Besse, Florent Berthelin, Yann Brenier, Pierre Bertrand. The multi-water-bag equations for collisionless kinetic modeling. Kinetic & Related Models, 2009, 2 (1) : 39-80. doi: 10.3934/krm.2009.2.39

[13]

Dan Stanescu, Benito Chen-Charpentier. Random coefficient differential equation models for Monod kinetics. Conference Publications, 2009, 2009 (Special) : 719-728. doi: 10.3934/proc.2009.2009.719

[14]

Wolfgang Walter. Nonlinear parabolic differential equations and inequalities. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 451-468. doi: 10.3934/dcds.2002.8.451

[15]

Wei Feng, Shuhua Hu, Xin Lu. Optimal controls for a 3-compartment model for cancer chemotherapy with quadratic objective. Conference Publications, 2003, 2003 (Special) : 544-553. doi: 10.3934/proc.2003.2003.544

[16]

Zhenguo Bai. Threshold dynamics of a periodic SIR model with delay in an infected compartment. Mathematical Biosciences & Engineering, 2015, 12 (3) : 555-564. doi: 10.3934/mbe.2015.12.555

[17]

Carole Guillevin, Rémy Guillevin, Alain Miranville, Angélique Perrillat-Mercerot. Analysis of a mathematical model for brain lactate kinetics. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1225-1242. doi: 10.3934/mbe.2018056

[18]

Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678

[19]

Djédjé Sylvain Zézé, Michel Potier-Ferry, Yannick Tampango. Multi-point Taylor series to solve differential equations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1791-1806. doi: 10.3934/dcdss.2019118

[20]

Mustafa Hasanbulli, Yuri V. Rogovchenko. Classification of nonoscillatory solutions of nonlinear neutral differential equations. Conference Publications, 2009, 2009 (Special) : 340-348. doi: 10.3934/proc.2009.2009.340

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

[Back to Top]