2005, 2(4): 771-788. doi: 10.3934/mbe.2005.2.771

The Effect of the HIV/AIDS Epidemic on Africa's Truck Drivers

1. 

Mathematics Department, University of Texas at Arlington, Box 19408, Arlington, TX 76019-0408, United States

2. 

Courant Institute, New York University, 251 Mercer Street, New York, NY 10012, United States

3. 

Department of Mathematics, St. Mary's University, One Camino Santa Maria, San Antonio, TX 78228-8503, United States

4. 

Department of Mathematics, Howard University, 204 Academic Support Building B, Washington, DC 20059, United States

5. 

Facultad de Ciencias, Universidad de Colima, Bernal Díaz del Castillo No. 340, Col. Villa San Sebastián, Colima, Colima, México, C.P. 28045, Mexico

Received  August 2005 Revised  September 2005 Published  October 2005

The AIDS epidemic is having a growing impact on the transport sector of the economy of sub-Saharan Africa, where long-distance truck drivers are at an increased risk of infection due to their frequent contacts with commercial sex workers. The spread of AIDS in the transport industry is especially significant to the economy, as truck drivers are largely responsible for transporting crops and supplies needed for daily subsistence. In this paper we analyze these effects via two models, one employing a switch and the other a Verhulst saturation function, to describe the rate at which new drivers are recruited in terms of the supply and demand for them in the general population. Results provide an estimate of the epidemic's economic impact on the transportation sector through the loss of truck drivers (an estimated 10% per year, with endemic levels near 90%).
Citation: Christopher M. Kribs-Zaleta, Melanie Lee, Christine Román, Shari Wiley, Carlos M. Hernández-Suárez. The Effect of the HIV/AIDS Epidemic on Africa's Truck Drivers. Mathematical Biosciences & Engineering, 2005, 2 (4) : 771-788. doi: 10.3934/mbe.2005.2.771
[1]

Gigi Thomas, Edward M. Lungu. A two-sex model for the influence of heavy alcohol consumption on the spread of HIV/AIDS. Mathematical Biosciences & Engineering, 2010, 7 (4) : 871-904. doi: 10.3934/mbe.2010.7.871

[2]

Brandy Rapatski, Petra Klepac, Stephen Dueck, Maoxing Liu, Leda Ivic Weiss. Mathematical epidemiology of HIV/AIDS in cuba during the period 1986-2000. Mathematical Biosciences & Engineering, 2006, 3 (3) : 545-556. doi: 10.3934/mbe.2006.3.545

[3]

Zhaohui Yuan, Xingfu Zou. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays. Mathematical Biosciences & Engineering, 2013, 10 (2) : 483-498. doi: 10.3934/mbe.2013.10.483

[4]

Yun Tian, Yu Bai, Pei Yu. Impact of delay on HIV-1 dynamics of fighting a virus with another virus. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1181-1198. doi: 10.3934/mbe.2014.11.1181

[5]

Cristiana J. Silva, Delfim F. M. Torres. A TB-HIV/AIDS coinfection model and optimal control treatment. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4639-4663. doi: 10.3934/dcds.2015.35.4639

[6]

Tufail Malik, Abba Gumel, Elamin H. Elbasha. Qualitative analysis of an age- and sex-structured vaccination model for human papillomavirus. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2151-2174. doi: 10.3934/dcdsb.2013.18.2151

[7]

Bing Li, Yuming Chen, Xuejuan Lu, Shengqiang Liu. A delayed HIV-1 model with virus waning term. Mathematical Biosciences & Engineering, 2016, 13 (1) : 135-157. doi: 10.3934/mbe.2016.13.135

[8]

Ram P. Sigdel, C. Connell McCluskey. Disease dynamics for the hometown of migrant workers. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1175-1180. doi: 10.3934/mbe.2014.11.1175

[9]

Haitao Song, Weihua Jiang, Shengqiang Liu. Virus dynamics model with intracellular delays and immune response. Mathematical Biosciences & Engineering, 2015, 12 (1) : 185-208. doi: 10.3934/mbe.2015.12.185

[10]

Toru Sasaki, Takashi Suzuki. Asymptotic behaviour of the solutions to a virus dynamics model with diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 525-541. doi: 10.3934/dcdsb.2017206

[11]

Hui li, Manjun Ma. Global dynamics of a virus infection model with repulsive effect. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-15. doi: 10.3934/dcdsb.2019030

[12]

Piotr Bajger, Mariusz Bodzioch, Urszula Foryś. Singularity of controls in a simple model of acquired chemotherapy resistance. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2039-2052. doi: 10.3934/dcdsb.2019083

[13]

Renato Soeiro, Abdelrahim Mousa, Tânia R. Oliveira, Alberto A. Pinto. Dynamics of human decisions. Journal of Dynamics & Games, 2014, 1 (1) : 121-151. doi: 10.3934/jdg.2014.1.121

[14]

H. Thomas Banks, Shuhua Hu, Zackary R. Kenz, Hien T. Tran. A comparison of nonlinear filtering approaches in the context of an HIV model. Mathematical Biosciences & Engineering, 2010, 7 (2) : 213-236. doi: 10.3934/mbe.2010.7.213

[15]

Steffen Eikenberry, Sarah Hews, John D. Nagy, Yang Kuang. The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth. Mathematical Biosciences & Engineering, 2009, 6 (2) : 283-299. doi: 10.3934/mbe.2009.6.283

[16]

Cuicui Jiang, Kaifa Wang, Lijuan Song. Global dynamics of a delay virus model with recruitment and saturation effects of immune responses. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1233-1246. doi: 10.3934/mbe.2017063

[17]

Cuicui Jiang, Wendi Wang. Complete classification of global dynamics of a virus model with immune responses. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1087-1103. doi: 10.3934/dcdsb.2014.19.1087

[18]

Xiaodan Sun, Yanni Xiao, Zhihang Peng. Modelling HIV superinfection among men who have sex with men. Mathematical Biosciences & Engineering, 2016, 13 (1) : 171-191. doi: 10.3934/mbe.2016.13.171

[19]

Avner Friedman, Najat Ziyadi, Khalid Boushaba. A model of drug resistance with infection by health care workers. Mathematical Biosciences & Engineering, 2010, 7 (4) : 779-792. doi: 10.3934/mbe.2010.7.779

[20]

Cristiana J. Silva, Delfim F. M. Torres. Modeling and optimal control of HIV/AIDS prevention through PrEP. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 119-141. doi: 10.3934/dcdss.2018008

[Back to Top]