October  2019, 12(5): 945-967. doi: 10.3934/krm.2019036

Macroscopic regularity for the relativistic Boltzmann equation with initial singularities

1. 

College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

2. 

College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China

* Corresponding author: Weiyuan Zou*

Received  January 2018 Revised  November 2018 Published  July 2019

Fund Project: The second author is supported by the Fundamental Research Funds for the Central Universities ZY1937

In this paper, it is proved that the macroscopic parts of the relativistic Boltzmann equation will be continuous, even though the macroscopic components are discontinuity initially. The Lorentz transformation plays an important role to prove the continuity of nonlinear term.

Citation: Yan Yong, Weiyuan Zou. Macroscopic regularity for the relativistic Boltzmann equation with initial singularities. Kinetic & Related Models, 2019, 12 (5) : 945-967. doi: 10.3934/krm.2019036
References:
[1]

K. Bichteler, On the Cauchy problem of the relativistic Boltzmann equation, Commun. Math. Phys., 4 (1967), 352-364. doi: 10.1007/BF01653649. Google Scholar

[2]

L. Boudin and L. Desvillettes, On the singularities of the global small solution soft the full Boltzmann equation, Monatsch. Math., 131 (2000), 91-108. doi: 10.1007/s006050070015. Google Scholar

[3]

R. J. Duan, M. R. Li and T. Yang, Propagation of singularities in the solutions to the Boltzmann equation near equilibrium, Math. Models Methods Appl. Sci., 18 (2008), 1093-1114. doi: 10.1142/S0218202508002966. Google Scholar

[4]

M. Dudyński and M. L. Ekiel-Jeżewska, Global existence proof for relativistic Boltzmann equation, J.Stat. Phys., 66 (1992), 991-1001. doi: 10.1007/BF01055712. Google Scholar

[5]

M. Dudyński and M. L. Ekiel-Jeżewska, Causality of the linearized relativistic Boltzmann equation, Phys. Rev. Lett., 55 (1985), 2831-2834. doi: 10.1103/PhysRevLett.55.2831. Google Scholar

[6]

M. Dudyński and M. L. Ekiel-Jeżewska, Errata: Causality of the linearized relativistic Boltzmann equation, Investigación Oper. 6 (1985), 2228. Google Scholar

[7]

M. Dudyński and M. L. Ekiel-Jeżewska, On the linearized relativistic Boltzmann equation. Ⅰ. Existence of solutions, Commun. Math. Phys., 115 (1988), 607-629. doi: 10.1007/BF01224130. Google Scholar

[8]

M. Dudyński, On the linearized relativistic Boltzmann equation. Ⅱ. Existence of hydro-dynamics, J. Stat. Phys., 57 (1989), 199–245. doi: 10.1007/BF01023641. Google Scholar

[9]

R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics, Philadelphia, 1996. doi: 10.1137/1.9781611971477. Google Scholar

[10]

R. T. Glassey and W. A. Strauss, Asymptotic stability of the relativistic Maxwellian, Publ. Res. Inst. Math. Sci., 29 (1993), 301-347. Google Scholar

[11]

R. T. Glassey and W. A. Strauss, Asymptotic stability of the relativistic Maxwellian via fourteen moments, Trans. Th. Stat. Phys., 24 (1995), 657-678. doi: 10.1080/00411459508206020. Google Scholar

[12]

R. T. Glassey, Global solutions to the Cauchy problem for the relativistic Boltzmann equation with near-vacuum data, Commun. Math. Phys., 264 (2006), 705-724. doi: 10.1007/s00220-006-1522-y. Google Scholar

[13]

F. GolseP. L. LionsB. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation, J. Funct. Anal., 76 (1988), 110-125. doi: 10.1016/0022-1236(88)90051-1. Google Scholar

[14]

L. Hsiao and H. Yu, Asymptotic stability of the relativistic Maxwellian, Math. Meth. Appl. Sci., 29 (2006), 1481-1499. doi: 10.1002/mma.736. Google Scholar

[15]

F. M. Huang and Y. Wang, Macroscopic regularity for the Boltzmann equation, Acta Math. Sci. Ser. B Engl. Ed., 38 (2018), 1549-1566. doi: 10.1016/S0252-9602(18)30831-2. Google Scholar

[16]

A. Lichnerowicz and R. Marrot, ropriétés statistiques des ensembles de particules en relativité restreinte, C. R. Acad. Sci. Paris, 210 (1940), 759-761. Google Scholar

[17]

R. M. Strain, Asymptotic stability of the relativistic boltzmann equation for the soft potentials, Commun. Math. Phys., 300 (2010), 529-597. doi: 10.1007/s00220-010-1129-1. Google Scholar

[18]

R. M. Strain, An Energy Method in Collisional Kinetic Theory, Ph.D. dissertation, Division of Applied Mathematics, Brown University, May 2005.Google Scholar

[19]

Y. Wang, Global well-posedness of the relativistic Boltzmann equation, SIAM J. Math. Anal., 50 (2018), 5637-5694. doi: 10.1137/17M112600X. Google Scholar

show all references

References:
[1]

K. Bichteler, On the Cauchy problem of the relativistic Boltzmann equation, Commun. Math. Phys., 4 (1967), 352-364. doi: 10.1007/BF01653649. Google Scholar

[2]

L. Boudin and L. Desvillettes, On the singularities of the global small solution soft the full Boltzmann equation, Monatsch. Math., 131 (2000), 91-108. doi: 10.1007/s006050070015. Google Scholar

[3]

R. J. Duan, M. R. Li and T. Yang, Propagation of singularities in the solutions to the Boltzmann equation near equilibrium, Math. Models Methods Appl. Sci., 18 (2008), 1093-1114. doi: 10.1142/S0218202508002966. Google Scholar

[4]

M. Dudyński and M. L. Ekiel-Jeżewska, Global existence proof for relativistic Boltzmann equation, J.Stat. Phys., 66 (1992), 991-1001. doi: 10.1007/BF01055712. Google Scholar

[5]

M. Dudyński and M. L. Ekiel-Jeżewska, Causality of the linearized relativistic Boltzmann equation, Phys. Rev. Lett., 55 (1985), 2831-2834. doi: 10.1103/PhysRevLett.55.2831. Google Scholar

[6]

M. Dudyński and M. L. Ekiel-Jeżewska, Errata: Causality of the linearized relativistic Boltzmann equation, Investigación Oper. 6 (1985), 2228. Google Scholar

[7]

M. Dudyński and M. L. Ekiel-Jeżewska, On the linearized relativistic Boltzmann equation. Ⅰ. Existence of solutions, Commun. Math. Phys., 115 (1988), 607-629. doi: 10.1007/BF01224130. Google Scholar

[8]

M. Dudyński, On the linearized relativistic Boltzmann equation. Ⅱ. Existence of hydro-dynamics, J. Stat. Phys., 57 (1989), 199–245. doi: 10.1007/BF01023641. Google Scholar

[9]

R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics, Philadelphia, 1996. doi: 10.1137/1.9781611971477. Google Scholar

[10]

R. T. Glassey and W. A. Strauss, Asymptotic stability of the relativistic Maxwellian, Publ. Res. Inst. Math. Sci., 29 (1993), 301-347. Google Scholar

[11]

R. T. Glassey and W. A. Strauss, Asymptotic stability of the relativistic Maxwellian via fourteen moments, Trans. Th. Stat. Phys., 24 (1995), 657-678. doi: 10.1080/00411459508206020. Google Scholar

[12]

R. T. Glassey, Global solutions to the Cauchy problem for the relativistic Boltzmann equation with near-vacuum data, Commun. Math. Phys., 264 (2006), 705-724. doi: 10.1007/s00220-006-1522-y. Google Scholar

[13]

F. GolseP. L. LionsB. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation, J. Funct. Anal., 76 (1988), 110-125. doi: 10.1016/0022-1236(88)90051-1. Google Scholar

[14]

L. Hsiao and H. Yu, Asymptotic stability of the relativistic Maxwellian, Math. Meth. Appl. Sci., 29 (2006), 1481-1499. doi: 10.1002/mma.736. Google Scholar

[15]

F. M. Huang and Y. Wang, Macroscopic regularity for the Boltzmann equation, Acta Math. Sci. Ser. B Engl. Ed., 38 (2018), 1549-1566. doi: 10.1016/S0252-9602(18)30831-2. Google Scholar

[16]

A. Lichnerowicz and R. Marrot, ropriétés statistiques des ensembles de particules en relativité restreinte, C. R. Acad. Sci. Paris, 210 (1940), 759-761. Google Scholar

[17]

R. M. Strain, Asymptotic stability of the relativistic boltzmann equation for the soft potentials, Commun. Math. Phys., 300 (2010), 529-597. doi: 10.1007/s00220-010-1129-1. Google Scholar

[18]

R. M. Strain, An Energy Method in Collisional Kinetic Theory, Ph.D. dissertation, Division of Applied Mathematics, Brown University, May 2005.Google Scholar

[19]

Y. Wang, Global well-posedness of the relativistic Boltzmann equation, SIAM J. Math. Anal., 50 (2018), 5637-5694. doi: 10.1137/17M112600X. Google Scholar

[1]

Seung-Yeal Ha, Eunhee Jeong, Robert M. Strain. Uniform $L^1$-stability of the relativistic Boltzmann equation near vacuum. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1141-1161. doi: 10.3934/cpaa.2013.12.1141

[2]

Robert M. Strain. Coordinates in the relativistic Boltzmann theory. Kinetic & Related Models, 2011, 4 (1) : 345-359. doi: 10.3934/krm.2011.4.345

[3]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Local existence with mild regularity for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 1011-1041. doi: 10.3934/krm.2013.6.1011

[4]

Thomas Chen, Ryan Denlinger, Nataša Pavlović. Moments and regularity for a Boltzmann equation via Wigner transform. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 4979-5015. doi: 10.3934/dcds.2019204

[5]

Robert M. Strain, Keya Zhu. Large-time decay of the soft potential relativistic Boltzmann equation in $\mathbb{R}^3_x$. Kinetic & Related Models, 2012, 5 (2) : 383-415. doi: 10.3934/krm.2012.5.383

[6]

Léo Glangetas, Hao-Guang Li, Chao-Jiang Xu. Sharp regularity properties for the non-cutoff spatially homogeneous Boltzmann equation. Kinetic & Related Models, 2016, 9 (2) : 299-371. doi: 10.3934/krm.2016.9.299

[7]

Zhaohui Huo, Yoshinori Morimoto, Seiji Ukai, Tong Yang. Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff. Kinetic & Related Models, 2008, 1 (3) : 453-489. doi: 10.3934/krm.2008.1.453

[8]

Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 187-212. doi: 10.3934/dcds.2009.24.187

[9]

Shuangqian Liu, Qinghua Xiao. The relativistic Vlasov-Maxwell-Boltzmann system for short range interaction. Kinetic & Related Models, 2016, 9 (3) : 515-550. doi: 10.3934/krm.2016005

[10]

A. Carati. On the existence of scattering solutions for the Abraham-Lorentz-Dirac equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 471-480. doi: 10.3934/dcdsb.2006.6.471

[11]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[12]

Tai-Ping Liu, Shih-Hsien Yu. Boltzmann equation, boundary effects. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 145-157. doi: 10.3934/dcds.2009.24.145

[13]

Leif Arkeryd, Anne Nouri. On a Boltzmann equation for Haldane statistics. Kinetic & Related Models, 2019, 12 (2) : 323-346. doi: 10.3934/krm.2019014

[14]

Sun-Sig Byun, Yumi Cho. Lorentz-Morrey regularity for nonlinear elliptic problems with irregular obstacles over Reifenberg flat domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4791-4804. doi: 10.3934/dcds.2015.35.4791

[15]

Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic & Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039

[16]

Yan Guo, Juhi Jang, Ning Jiang. Local Hilbert expansion for the Boltzmann equation. Kinetic & Related Models, 2009, 2 (1) : 205-214. doi: 10.3934/krm.2009.2.205

[17]

Raffaele Esposito, Yan Guo, Rossana Marra. Validity of the Boltzmann equation with an external force. Kinetic & Related Models, 2011, 4 (2) : 499-515. doi: 10.3934/krm.2011.4.499

[18]

El Miloud Zaoui, Marc Laforest. Stability and modeling error for the Boltzmann equation. Kinetic & Related Models, 2014, 7 (2) : 401-414. doi: 10.3934/krm.2014.7.401

[19]

Alexander Bobylev, Åsa Windfäll. Boltzmann equation and hydrodynamics at the Burnett level. Kinetic & Related Models, 2012, 5 (2) : 237-260. doi: 10.3934/krm.2012.5.237

[20]

Radjesvarane Alexandre. A review of Boltzmann equation with singular kernels. Kinetic & Related Models, 2009, 2 (4) : 551-646. doi: 10.3934/krm.2009.2.551

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (41)
  • HTML views (73)
  • Cited by (0)

Other articles
by authors

[Back to Top]