• Previous Article
    A global existence of classical solutions to the two-dimensional Vlasov-Fokker-Planck and magnetohydrodynamics equations with large initial data
  • KRM Home
  • This Issue
  • Next Article
    Emergence of aggregation in the swarm sphere model with adaptive coupling laws
April 2019, 12(2): 397-409. doi: 10.3934/krm.2019017

On the interplay between behavioral dynamics and social interactions in human crowds

(1). 

Politecnico of Torino and Collegio Carlo Alberto, Torino, Italy

(2). 

School of Engineering, University of Edinburgh, Edinburgh, United Kingdom

(3). 

Mathematics and Population Dynamics Laboratory-UMMISCO, Faculty of Sciences of Semlalia of Marrakech, Cadi Ayyad Univ., Morocco

(4). 

Jacques Louis-Lions Laboratory, Pierre et Marie Curie University, Paris 6, France

Received  May 2018 Published  November 2018

This paper presents a computational modeling approach to the dynamics of human crowds, where social interactions can have an important influence on the behavioral dynamics of pedestrians. The modeling of the contagion and propagation of emotional states is carried out by looking at real physical situations where safety problems might arise in some specific circumstances. The approach is based on the methods of the kinetic theory of active particles. The evacuation of a metro station is simulated to enlighten the role of the emotional state in the overall dynamics.

Citation: Nicola Bellomo, Livio Gibelli, Nisrine Outada. On the interplay between behavioral dynamics and social interactions in human crowds. Kinetic & Related Models, 2019, 12 (2) : 397-409. doi: 10.3934/krm.2019017
References:
[1]

G. Ajmone MarsanN. Bellomo and L. Gibelli, Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics, Math. Models Methods Appl. Sci., 26 (2016), 1051-1093. doi: 10.1142/S0218202516500251.

[2]

V.V. Aristov, Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows, Springer-Verlag, New York, 2001. doi: 10.1007/978-94-010-0866-2.

[3]

P. BarbanteA. Frezzotti and L. Gibelli, A kinetic theory description of liquid menisci at the microscale, Kinet. Relat. Models, 8 (2015), 235-254. doi: 10.3934/krm.2015.8.235.

[4]

N. Bellomo and A. Bellouquid, On multiscale models of pedestrian crowds from mesoscopic to macroscopic, Comm. Math. Sciences, 13 (2015), 1649-1664. doi: 10.4310/CMS.2015.v13.n7.a1.

[5]

N. Bellomo, A. Bellouquid, L. Gibelli and N. Outada, A Quest Towards a Mathematical Theory of Living Systems, Birkhäuser, New York, 2017. doi: 10.1007/978-3-319-57436-3.

[6]

N. BellomoA. Bellouquid and D. Knopoff, From the micro-scale to collective crowd dynamics, Multiscale Model. Sim., 11 (2013), 943-963.

[7]

N. BellomoD. ClarkL. GibelliP. Townsend and B.J. Vreugdenhil, Vreugdenhil, Human behaviours in evacuation crowd dynamics: From modelling to ig data toward crisis management, Phys. Life Rev., 18 (2016), 1-21.

[8]

N. Bellomo and L. Gibelli, Toward a behavioral-social dynamics of pedestrian crowds, Math. Models Methods Appl. Sci., 25 (2015), 395-400. doi: 10.1142/S0218202515020017.

[9]

N. Bellomo and L. Gibelli, Behavioral crowds: Modeling and Monte Carlo simulations toward validation, Comp. & Fluids, 141 (2016), 13-21. doi: 10.1016/j.compfluid.2016.04.022.

[10]

D. BuriniS. De Lillo and L. Gibelli, Stochastic differential "nonlinear" games modeling collective learning dynamics, Phys. Life Rev., 16 (2016), 123-139.

[11]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Diluted Gas, Springer, Heidelberg, New York, 1994. doi: 10.1007/978-1-4419-8524-8.

[12]

A. CorbettaA. Mountean and K. Vafayi, Parameter estimation of social forces in pedestrian dynamics models via probabilistic method, Math. Biosci. Eng., 12 (2015), 337-356. doi: 10.3934/mbe.2015.12.337.

[13]

E. Cristiani, B. Piccoli and A. Tosin, Multiscale Modeling of Pedestrian Dynamics, Springer, 2014. doi: 10.1007/978-3-319-06620-2.

[14]

P. DegondC. Appert-RollandJ. Pettré and G. Theraulaz, Vision based macroscopic pedestrian models, Kinetic Related Models, 6 (2013), 809-839. doi: 10.3934/krm.2013.6.809.

[15]

P. DegondC. Appert-RollandM. MoussaïdJ. Pettré and G. Theraulaz, A hierarchy of heuristic-based models of crowd dynamics, J. Stat. Phys., 152 (2013), 1033-1068. doi: 10.1007/s10955-013-0805-x.

[16]

P. DegondJ.-G. LiuS. Merino-Aceituno and T. Tardiveau, Continuum dynamics of the intention field under weakly cohesive social interaction, Math. Models Methods Appl. Sci., 27 (2017), 159-182. doi: 10.1142/S021820251740005X.

[17]

J. M. Epstein, Modeling civil violence: An agent based computational approach, Proc. Nat. Acad. Sci., 99 (2002), 7243-7250.

[18]

D. Helbing, Traffic and related self-driven many-particle systems, Rev. Modern Phys., 73 (2001), 1067-1141.

[19]

D. HelbingI. Farkas and T. Vicsek, Simulating dynamical feature of escape panic, Nature, 407 (2000), 487-490.

[20]

D. Helbing and A. Johansson, Pedestrian crowd and evacuation dynamics, Enciclopedia of Complexity and System Science, (2009), 6476-6495.

[21]

D. Helbing, A. Johansson and H. Z. Al-Abideen, Dynamics of crowd disasters: An empirical study, Phys. Rev. E, 75 (2007), 046109.

[22]

R. L. Hughes, The flow of human crowds, Annu. Rev. Fluid Mech., 35 (2003), 169-182. doi: 10.1146/annurev.fluid.35.101101.161136.

[23]

M. Kinateder et al., Human behaviour in severe tunnel accidents: Effects of information and behavioural training, Transp. Res. Part F: Traffic Psychology and Behaviour, 17 (2013), 20–32.

[24]

J. Lin and T. A. Luckas, A particle swarm optimization model of emergency airplane evacuation with emotion, Net. Het. Media, 10 (2015), 631-646. doi: 10.3934/nhm.2015.10.631.

[25]

M. MoussaïdD. HelbingS. GarnierA. JohanssonM. Combe and G. Theraulaz, Experimental study of the behavioural mechanisms underlying self-organization in human crowds, Proc. Roy. Soc. B, 276 (2009), 2755-2762.

[26]

M. Moussaïd and G. Theraulaz, Comment les piétons marchent dans la foule, La Recherche, 450 (2011), 56-59.

[27]

L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods, Oxford University Press, Oxford, 2014.

[28]

F. RonchiF. Nieto UrizX. Criel and P. Reilly, Modelling large-scale evacuation of music festival, Fire Safety, 5 (2016), 11-19.

[29]

L. WangM. Short and A. L. Bertozzi, Efficient numerical methods for multiscale crowd dynamics with emotional contagion, Math. Models Methods Appl. Sci., 27 (2017), 205-230. doi: 10.1142/S0218202517400073.

[30]

N. WijermansC. ConradoM. van SteenC. Martella and J. L. Li, A landscape of crowd management support: An integrative approach, Safety Science, 86 (2016), 142-164.

[31]

N. WijermansR. JornaW. JagerT. van Vliet and O. M. J. Adang, CROSS: Modelling crowd behaviour with social-cognitive agents, Journal of Artificial Societies and Social Simulation, 16 (2013), 1-14.

show all references

References:
[1]

G. Ajmone MarsanN. Bellomo and L. Gibelli, Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics, Math. Models Methods Appl. Sci., 26 (2016), 1051-1093. doi: 10.1142/S0218202516500251.

[2]

V.V. Aristov, Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows, Springer-Verlag, New York, 2001. doi: 10.1007/978-94-010-0866-2.

[3]

P. BarbanteA. Frezzotti and L. Gibelli, A kinetic theory description of liquid menisci at the microscale, Kinet. Relat. Models, 8 (2015), 235-254. doi: 10.3934/krm.2015.8.235.

[4]

N. Bellomo and A. Bellouquid, On multiscale models of pedestrian crowds from mesoscopic to macroscopic, Comm. Math. Sciences, 13 (2015), 1649-1664. doi: 10.4310/CMS.2015.v13.n7.a1.

[5]

N. Bellomo, A. Bellouquid, L. Gibelli and N. Outada, A Quest Towards a Mathematical Theory of Living Systems, Birkhäuser, New York, 2017. doi: 10.1007/978-3-319-57436-3.

[6]

N. BellomoA. Bellouquid and D. Knopoff, From the micro-scale to collective crowd dynamics, Multiscale Model. Sim., 11 (2013), 943-963.

[7]

N. BellomoD. ClarkL. GibelliP. Townsend and B.J. Vreugdenhil, Vreugdenhil, Human behaviours in evacuation crowd dynamics: From modelling to ig data toward crisis management, Phys. Life Rev., 18 (2016), 1-21.

[8]

N. Bellomo and L. Gibelli, Toward a behavioral-social dynamics of pedestrian crowds, Math. Models Methods Appl. Sci., 25 (2015), 395-400. doi: 10.1142/S0218202515020017.

[9]

N. Bellomo and L. Gibelli, Behavioral crowds: Modeling and Monte Carlo simulations toward validation, Comp. & Fluids, 141 (2016), 13-21. doi: 10.1016/j.compfluid.2016.04.022.

[10]

D. BuriniS. De Lillo and L. Gibelli, Stochastic differential "nonlinear" games modeling collective learning dynamics, Phys. Life Rev., 16 (2016), 123-139.

[11]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Diluted Gas, Springer, Heidelberg, New York, 1994. doi: 10.1007/978-1-4419-8524-8.

[12]

A. CorbettaA. Mountean and K. Vafayi, Parameter estimation of social forces in pedestrian dynamics models via probabilistic method, Math. Biosci. Eng., 12 (2015), 337-356. doi: 10.3934/mbe.2015.12.337.

[13]

E. Cristiani, B. Piccoli and A. Tosin, Multiscale Modeling of Pedestrian Dynamics, Springer, 2014. doi: 10.1007/978-3-319-06620-2.

[14]

P. DegondC. Appert-RollandJ. Pettré and G. Theraulaz, Vision based macroscopic pedestrian models, Kinetic Related Models, 6 (2013), 809-839. doi: 10.3934/krm.2013.6.809.

[15]

P. DegondC. Appert-RollandM. MoussaïdJ. Pettré and G. Theraulaz, A hierarchy of heuristic-based models of crowd dynamics, J. Stat. Phys., 152 (2013), 1033-1068. doi: 10.1007/s10955-013-0805-x.

[16]

P. DegondJ.-G. LiuS. Merino-Aceituno and T. Tardiveau, Continuum dynamics of the intention field under weakly cohesive social interaction, Math. Models Methods Appl. Sci., 27 (2017), 159-182. doi: 10.1142/S021820251740005X.

[17]

J. M. Epstein, Modeling civil violence: An agent based computational approach, Proc. Nat. Acad. Sci., 99 (2002), 7243-7250.

[18]

D. Helbing, Traffic and related self-driven many-particle systems, Rev. Modern Phys., 73 (2001), 1067-1141.

[19]

D. HelbingI. Farkas and T. Vicsek, Simulating dynamical feature of escape panic, Nature, 407 (2000), 487-490.

[20]

D. Helbing and A. Johansson, Pedestrian crowd and evacuation dynamics, Enciclopedia of Complexity and System Science, (2009), 6476-6495.

[21]

D. Helbing, A. Johansson and H. Z. Al-Abideen, Dynamics of crowd disasters: An empirical study, Phys. Rev. E, 75 (2007), 046109.

[22]

R. L. Hughes, The flow of human crowds, Annu. Rev. Fluid Mech., 35 (2003), 169-182. doi: 10.1146/annurev.fluid.35.101101.161136.

[23]

M. Kinateder et al., Human behaviour in severe tunnel accidents: Effects of information and behavioural training, Transp. Res. Part F: Traffic Psychology and Behaviour, 17 (2013), 20–32.

[24]

J. Lin and T. A. Luckas, A particle swarm optimization model of emergency airplane evacuation with emotion, Net. Het. Media, 10 (2015), 631-646. doi: 10.3934/nhm.2015.10.631.

[25]

M. MoussaïdD. HelbingS. GarnierA. JohanssonM. Combe and G. Theraulaz, Experimental study of the behavioural mechanisms underlying self-organization in human crowds, Proc. Roy. Soc. B, 276 (2009), 2755-2762.

[26]

M. Moussaïd and G. Theraulaz, Comment les piétons marchent dans la foule, La Recherche, 450 (2011), 56-59.

[27]

L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods, Oxford University Press, Oxford, 2014.

[28]

F. RonchiF. Nieto UrizX. Criel and P. Reilly, Modelling large-scale evacuation of music festival, Fire Safety, 5 (2016), 11-19.

[29]

L. WangM. Short and A. L. Bertozzi, Efficient numerical methods for multiscale crowd dynamics with emotional contagion, Math. Models Methods Appl. Sci., 27 (2017), 205-230. doi: 10.1142/S0218202517400073.

[30]

N. WijermansC. ConradoM. van SteenC. Martella and J. L. Li, A landscape of crowd management support: An integrative approach, Safety Science, 86 (2016), 142-164.

[31]

N. WijermansR. JornaW. JagerT. van Vliet and O. M. J. Adang, CROSS: Modelling crowd behaviour with social-cognitive agents, Journal of Artificial Societies and Social Simulation, 16 (2013), 1-14.

Figure 1.  Geometry of the venue
Figure 2.  Density contour plots of the mean density of the emotional state, $\rho \bar{u}$, with (pedestrians on the left) and without (pedestrians on the right) social interactions at different times
Figure 3.  Density contour plots of the mean density of the emotional state, $\rho \bar{u}$, with (pedestrians on the left) and without (pedestrians on the right) social interactions at different times
Figure 4.  Averaged value of the emotional state of the crowd, $\bar{U}$, versus time for different values of the social parameter
[1]

Nicola Bellomo, Abdelghani Bellouquid. On the modeling of crowd dynamics: Looking at the beautiful shapes of swarms. Networks & Heterogeneous Media, 2011, 6 (3) : 383-399. doi: 10.3934/nhm.2011.6.383

[2]

Nicola Bellomo, Miguel A. Herrero, Andrea Tosin. On the dynamics of social conflicts: Looking for the black swan. Kinetic & Related Models, 2013, 6 (3) : 459-479. doi: 10.3934/krm.2013.6.459

[3]

Robin Cohen, Alan Tsang, Krishna Vaidyanathan, Haotian Zhang. Analyzing opinion dynamics in online social networks. Big Data & Information Analytics, 2016, 1 (4) : 279-298. doi: 10.3934/bdia.2016011

[4]

Pierre Degond, Gadi Fibich, Benedetto Piccoli, Eitan Tadmor. Special issue on modeling and control in social dynamics. Networks & Heterogeneous Media, 2015, 10 (3) : i-ii. doi: 10.3934/nhm.2015.10.3i

[5]

Veronika Schleper. A hybrid model for traffic flow and crowd dynamics with random individual properties. Mathematical Biosciences & Engineering, 2015, 12 (2) : 393-413. doi: 10.3934/mbe.2015.12.393

[6]

Sebastien Motsch, Mehdi Moussaïd, Elsa G. Guillot, Mathieu Moreau, Julien Pettré, Guy Theraulaz, Cécile Appert-Rolland, Pierre Degond. Modeling crowd dynamics through coarse-grained data analysis. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1271-1290. doi: 10.3934/mbe.2018059

[7]

Clinton Innes, Razvan C. Fetecau, Ralf W. Wittenberg. Modelling heterogeneity and an open-mindedness social norm in opinion dynamics. Networks & Heterogeneous Media, 2017, 12 (1) : 59-92. doi: 10.3934/nhm.2017003

[8]

Alessandro Corbetta, Adrian Muntean, Kiamars Vafayi. Parameter estimation of social forces in pedestrian dynamics models via a probabilistic method. Mathematical Biosciences & Engineering, 2015, 12 (2) : 337-356. doi: 10.3934/mbe.2015.12.337

[9]

Simone Farinelli. Geometric arbitrage theory and market dynamics. Journal of Geometric Mechanics, 2015, 7 (4) : 431-471. doi: 10.3934/jgm.2015.7.431

[10]

Mirosław Lachowicz, Andrea Quartarone, Tatiana V. Ryabukha. Stability of solutions of kinetic equations corresponding to the replicator dynamics. Kinetic & Related Models, 2014, 7 (1) : 109-119. doi: 10.3934/krm.2014.7.109

[11]

Philippe Pécol, Pierre Argoul, Stefano Dal Pont, Silvano Erlicher. The non-smooth view for contact dynamics by Michel Frémond extended to the modeling of crowd movements. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 547-565. doi: 10.3934/dcdss.2013.6.547

[12]

Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012

[13]

Pablo Álvarez-Caudevilla, Julián López-Gómez. The dynamics of a class of cooperative systems. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 397-415. doi: 10.3934/dcds.2010.26.397

[14]

Michael Hochman. Lectures on dynamics, fractal geometry, and metric number theory. Journal of Modern Dynamics, 2014, 8 (3&4) : 437-497. doi: 10.3934/jmd.2014.8.437

[15]

Antonio Ambrosetti, Massimiliano Berti. Applications of critical point theory to homoclinics and complex dynamics. Conference Publications, 1998, 1998 (Special) : 72-78. doi: 10.3934/proc.1998.1998.72

[16]

M. D. König, Stefano Battiston, M. Napoletano, F. Schweitzer. On algebraic graph theory and the dynamics of innovation networks. Networks & Heterogeneous Media, 2008, 3 (2) : 201-219. doi: 10.3934/nhm.2008.3.201

[17]

Giacomo Albi, Lorenzo Pareschi, Mattia Zanella. Opinion dynamics over complex networks: Kinetic modelling and numerical methods. Kinetic & Related Models, 2017, 10 (1) : 1-32. doi: 10.3934/krm.2017001

[18]

Carlota M. Cuesta, Sabine Hittmeir, Christian Schmeiser. Weak shocks of a BGK kinetic model for isentropic gas dynamics. Kinetic & Related Models, 2010, 3 (2) : 255-279. doi: 10.3934/krm.2010.3.255

[19]

Charles Nguyen, Stephen Pankavich. A one-dimensional kinetic model of plasma dynamics with a transport field. Evolution Equations & Control Theory, 2014, 3 (4) : 681-698. doi: 10.3934/eect.2014.3.681

[20]

Robert A. Gatenby, B. Roy Frieden. The Role of Non-Genomic Information in Maintaining Thermodynamic Stability in Living Systems. Mathematical Biosciences & Engineering, 2005, 2 (1) : 43-51. doi: 10.3934/mbe.2005.2.43

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (19)
  • HTML views (70)
  • Cited by (0)

Other articles
by authors

[Back to Top]