February 2019, 12(1): 243-267. doi: 10.3934/krm.2019011

Time-splitting methods to solve the Hall-MHD systems with Lévy noises

1. 

School of Mathematical Sciences, Xiamen University, Xiamen 361005, China

2. 

College of Mathematics and Statistics, Chongqing University, Chongqing 400044, China

* Corresponding author: Yucong Wang

Received  March 2017 Revised  March 2018 Published  July 2018

Fund Project: Z. Tan and Y.C. Wang is supported by the National Natural Science Foundation of China No. 11271305, 11531010. H. Wang is supported by National Postdoctoral Program for Innovative Talents No. BX201600020

In this paper, we establish the existence of a martingale solution to the stochastic incompressible Hall-MHD systems with Lévy noises in a bounded domain. The proof is based on a new method, i.e., the time splitting method and the stochastic compactness method.

Citation: Zhong Tan, Huaqiao Wang, Yucong Wang. Time-splitting methods to solve the Hall-MHD systems with Lévy noises. Kinetic & Related Models, 2019, 12 (1) : 243-267. doi: 10.3934/krm.2019011
References:
[1]

M. AcheritogaryP. DegondA. Frouvelle and J.-G. Liu, Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system, Kinet. Relat. Models., 4 (2011), 901-918. doi: 10.3934/krm.2011.4.901.

[2]

D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511755323.

[3]

V. Barbu and G. Da Prato, Existence and ergodicity for the 2D stochastic MHD equations, Appl. Math. Optim., 56 (2007), 145-168. doi: 10.1007/s00245-007-0882-2.

[4]

M. J. Benvenutti and L. C. F. Ferreira, Existence and stability of global large strong solutions for the Hall-MHD system, Mathematics, 29 (2016), 977-1000.

[5]

F. Berthelin and J. Vovelle, Stochastic isentropic Euler equations, Mathematics, (2013), 1-54.

[6]

Z. Brzeźniak and E. Hausenblas, Uniqueness of the Stochastic Integral Driven by Lévy Processes, in: Seminar on Stochastic Analysis, Random Fields and Applications VI, Birkhäuser, 2011.

[7]

Z. Brzeźniak and E. Hausenblas, Martingale solutions for stochastic equations of reaction diffusion type driven by Lévy noise or Poisson random measure, Preprint, arXiv: math/1010.5933v1.

[8]

I. Chueshov and A. Millet, Stochastic 2D hydrodynamical type systems: Well posedeness and large deviations, Applied Mathematics & Optimization, 61 (2010), 379-420. doi: 10.1007/s00245-009-9091-z.

[9]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223.

[10]

T. G. Forbes, Magnetic reconnection in solar flares, Geophysical Fluid Dynamics., 62 (1991), 15-36. doi: 10.1080/03091929108229123.

[11]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, 1981.

[12]

A. Jakubowski, The a.s. Skorokhod representation for subsequences in nonmetric spaces, Teor. Veroyatnost. i Primenen., 42 (1997), 209-216. doi: 10.4213/tvp1769.

[13]

A. Joffe and M. Métivier, Weak convergence of sequences of semimartingales with applications to multitype branching processes, Adv. Appl. Prob., 18 (1986), 20-65. doi: 10.2307/1427238.

[14]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0949-2.

[15]

M. J. Lighthill, Studies on magneto-hydrodynamics waves and other anisogtropic wave motion, Philo. Trans. R. Soc. Lond. Ser A., 252 (1960), 397-430. doi: 10.1098/rsta.1960.0010.

[16]

J. L. Menaldi and S. S. Sritharan, Stochastic 2-D Navier-Stokes Equation, Appl Math Optim., 46 (2002), 31-53. doi: 10.1007/s00245-002-0734-6.

[17]

P. D. MininniD. O. Gomez and S. M. Mahajan, Dynamo Action in magnetohydrodynamics and Hall magnetohydrodynamics, Astrophys. J., 587 (2003), 472-481. doi: 10.1086/368181.

[18]

E. Motyl, Stochastic Navier-Stokes Equations driven by Levy noise in unbounded 3D domains, Potential Anal., 38 (2013), 863-912. doi: 10.1007/s11118-012-9300-2.

[19]

E. Motyl, Stochastic hydrodynamic-type evolution equations driven by Lévy noise in 3D unbounded domains-Abstract framework and applications, Stochasitc Process. Appl., 124 (2014), 2052-2097. doi: 10.1016/j.spa.2014.01.009.

[20]

S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach, Cambridge University Press, Cambridge, 2007. doi: 10.1017/CBO9780511721373.

[21]

M. Sango, Magnetohydrodynamic turbulent flows: Existence results, Phys. D., 239 (2010), 912-923. doi: 10.1016/j.physd.2010.01.009.

[22]

K. I. Sato, Lévy Processes and Infinite Divisible Distributions, Cambridge University Press, Cambridge, 1999.

[23]

D. A. Shalybkov and V. A. Urpin, The Hall effect and the decay of magnetic fields, Astronomy & Astrophysics., 321 (1997), 685-690.

[24]

A. N. Simakov and L. Chacón, Quantitative, analytical model for magnetic reconnection in Hall magnetohydrodynamics, Physics of Plasmas, 16 (2009), 055701. doi: 10.1063/1.3077269.

[25]

S.S. Sritharan and P. Sundar, The stochastic magneto-hydrodynamic system, Infinite Dimensional Analysis Quantum Probability & Related Topics, 2 (1999), 241-265. doi: 10.1142/S0219025799000138.

[26]

P. Sundar, Stochastic magnetohydrodynamic system perturbed by general noise, Commun. Stoch. Anal., 4 (2010), 253-269.

[27]

Z. TanD. Wang and H. Wang, Global strong solution to the three-dimensional stochastic incompressible magnetohydrodynamic equations, Math. Ann., 365 (2016), 1219-1256. doi: 10.1007/s00208-015-1296-7.

show all references

References:
[1]

M. AcheritogaryP. DegondA. Frouvelle and J.-G. Liu, Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system, Kinet. Relat. Models., 4 (2011), 901-918. doi: 10.3934/krm.2011.4.901.

[2]

D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511755323.

[3]

V. Barbu and G. Da Prato, Existence and ergodicity for the 2D stochastic MHD equations, Appl. Math. Optim., 56 (2007), 145-168. doi: 10.1007/s00245-007-0882-2.

[4]

M. J. Benvenutti and L. C. F. Ferreira, Existence and stability of global large strong solutions for the Hall-MHD system, Mathematics, 29 (2016), 977-1000.

[5]

F. Berthelin and J. Vovelle, Stochastic isentropic Euler equations, Mathematics, (2013), 1-54.

[6]

Z. Brzeźniak and E. Hausenblas, Uniqueness of the Stochastic Integral Driven by Lévy Processes, in: Seminar on Stochastic Analysis, Random Fields and Applications VI, Birkhäuser, 2011.

[7]

Z. Brzeźniak and E. Hausenblas, Martingale solutions for stochastic equations of reaction diffusion type driven by Lévy noise or Poisson random measure, Preprint, arXiv: math/1010.5933v1.

[8]

I. Chueshov and A. Millet, Stochastic 2D hydrodynamical type systems: Well posedeness and large deviations, Applied Mathematics & Optimization, 61 (2010), 379-420. doi: 10.1007/s00245-009-9091-z.

[9]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223.

[10]

T. G. Forbes, Magnetic reconnection in solar flares, Geophysical Fluid Dynamics., 62 (1991), 15-36. doi: 10.1080/03091929108229123.

[11]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, 1981.

[12]

A. Jakubowski, The a.s. Skorokhod representation for subsequences in nonmetric spaces, Teor. Veroyatnost. i Primenen., 42 (1997), 209-216. doi: 10.4213/tvp1769.

[13]

A. Joffe and M. Métivier, Weak convergence of sequences of semimartingales with applications to multitype branching processes, Adv. Appl. Prob., 18 (1986), 20-65. doi: 10.2307/1427238.

[14]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0949-2.

[15]

M. J. Lighthill, Studies on magneto-hydrodynamics waves and other anisogtropic wave motion, Philo. Trans. R. Soc. Lond. Ser A., 252 (1960), 397-430. doi: 10.1098/rsta.1960.0010.

[16]

J. L. Menaldi and S. S. Sritharan, Stochastic 2-D Navier-Stokes Equation, Appl Math Optim., 46 (2002), 31-53. doi: 10.1007/s00245-002-0734-6.

[17]

P. D. MininniD. O. Gomez and S. M. Mahajan, Dynamo Action in magnetohydrodynamics and Hall magnetohydrodynamics, Astrophys. J., 587 (2003), 472-481. doi: 10.1086/368181.

[18]

E. Motyl, Stochastic Navier-Stokes Equations driven by Levy noise in unbounded 3D domains, Potential Anal., 38 (2013), 863-912. doi: 10.1007/s11118-012-9300-2.

[19]

E. Motyl, Stochastic hydrodynamic-type evolution equations driven by Lévy noise in 3D unbounded domains-Abstract framework and applications, Stochasitc Process. Appl., 124 (2014), 2052-2097. doi: 10.1016/j.spa.2014.01.009.

[20]

S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach, Cambridge University Press, Cambridge, 2007. doi: 10.1017/CBO9780511721373.

[21]

M. Sango, Magnetohydrodynamic turbulent flows: Existence results, Phys. D., 239 (2010), 912-923. doi: 10.1016/j.physd.2010.01.009.

[22]

K. I. Sato, Lévy Processes and Infinite Divisible Distributions, Cambridge University Press, Cambridge, 1999.

[23]

D. A. Shalybkov and V. A. Urpin, The Hall effect and the decay of magnetic fields, Astronomy & Astrophysics., 321 (1997), 685-690.

[24]

A. N. Simakov and L. Chacón, Quantitative, analytical model for magnetic reconnection in Hall magnetohydrodynamics, Physics of Plasmas, 16 (2009), 055701. doi: 10.1063/1.3077269.

[25]

S.S. Sritharan and P. Sundar, The stochastic magneto-hydrodynamic system, Infinite Dimensional Analysis Quantum Probability & Related Topics, 2 (1999), 241-265. doi: 10.1142/S0219025799000138.

[26]

P. Sundar, Stochastic magnetohydrodynamic system perturbed by general noise, Commun. Stoch. Anal., 4 (2010), 253-269.

[27]

Z. TanD. Wang and H. Wang, Global strong solution to the three-dimensional stochastic incompressible magnetohydrodynamic equations, Math. Ann., 365 (2016), 1219-1256. doi: 10.1007/s00208-015-1296-7.

[1]

Kumarasamy Sakthivel, Sivaguru S. Sritharan. Martingale solutions for stochastic Navier-Stokes equations driven by Lévy noise. Evolution Equations & Control Theory, 2012, 1 (2) : 355-392. doi: 10.3934/eect.2012.1.355

[2]

Jincheng Gao, Zheng-An Yao. Global existence and optimal decay rates of solutions for compressible Hall-MHD equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3077-3106. doi: 10.3934/dcds.2016.36.3077

[3]

Jishan Fan, Fucai Li, Gen Nakamura. Low Mach number limit of the full compressible Hall-MHD system. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1731-1740. doi: 10.3934/cpaa.2017084

[4]

Hussain Alazki, Alexander Poznyak. Robust output stabilization for a class of nonlinear uncertain stochastic systems under multiplicative and additive noises: The attractive ellipsoid method. Journal of Industrial & Management Optimization, 2016, 12 (1) : 169-186. doi: 10.3934/jimo.2016.12.169

[5]

Jiahui Zhu, Zdzisław Brzeźniak. Nonlinear stochastic partial differential equations of hyperbolic type driven by Lévy-type noises. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3269-3299. doi: 10.3934/dcdsb.2016097

[6]

Liejune Shiau, Roland Glowinski. Operator splitting method for friction constrained dynamical systems. Conference Publications, 2005, 2005 (Special) : 806-815. doi: 10.3934/proc.2005.2005.806

[7]

Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221

[8]

Wen Chen, Song Wang. A finite difference method for pricing European and American options under a geometric Lévy process. Journal of Industrial & Management Optimization, 2015, 11 (1) : 241-264. doi: 10.3934/jimo.2015.11.241

[9]

Badr-eddine Berrhazi, Mohamed El Fatini, Tomás Caraballo, Roger Pettersson. A stochastic SIRI epidemic model with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3645-3661. doi: 10.3934/dcdsb.2018057

[10]

Danielle Hilhorst, Masato Iida, Masayasu Mimura, Hirokazu Ninomiya. Relative compactness in $L^p$ of solutions of some 2m components competition-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 233-244. doi: 10.3934/dcds.2008.21.233

[11]

Nathan Glatt-Holtz, Roger Temam, Chuntian Wang. Martingale and pathwise solutions to the stochastic Zakharov-Kuznetsov equation with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1047-1085. doi: 10.3934/dcdsb.2014.19.1047

[12]

Manil T. Mohan, Sivaguru S. Sritharan. $\mathbb{L}^p-$solutions of the stochastic Navier-Stokes equations subject to Lévy noise with $\mathbb{L}^m(\mathbb{R}^m)$ initial data. Evolution Equations & Control Theory, 2017, 6 (3) : 409-425. doi: 10.3934/eect.2017021

[13]

Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027

[14]

Nathan Glatt-Holtz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1241-1268. doi: 10.3934/dcds.2010.26.1241

[15]

Tôn Việt Tạ. Non-autonomous stochastic evolution equations in Banach spaces of martingale type 2: Strict solutions and maximal regularity. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4507-4542. doi: 10.3934/dcds.2017193

[16]

Qinqin Chai, Ryan Loxton, Kok Lay Teo, Chunhua Yang. A unified parameter identification method for nonlinear time-delay systems. Journal of Industrial & Management Optimization, 2013, 9 (2) : 471-486. doi: 10.3934/jimo.2013.9.471

[17]

Min Zhao, Shengfan Zhou. Random attractor for stochastic Boissonade system with time-dependent deterministic forces and white noises. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1683-1717. doi: 10.3934/dcdsb.2017081

[18]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[19]

Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013

[20]

Lijian Jiang, Craig C. Douglas. Analysis of an operator splitting method in 4D-Var. Conference Publications, 2009, 2009 (Special) : 394-403. doi: 10.3934/proc.2009.2009.394

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (44)
  • HTML views (67)
  • Cited by (0)

Other articles
by authors

[Back to Top]