• Previous Article
    Kinetic models and intrinsic timescales: Simulation comparison for a 2nd order queueing model
  • KRM Home
  • This Issue
  • Next Article
    A quantum Drift-Diffusion model and its use into a hybrid strategy for strongly confined nanostructures
February 2019, 12(1): 195-216. doi: 10.3934/krm.2019009

An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions

1. 

Department of Mathematics, North Carolina State University, Raleigh, NC, 27695, USA

2. 

Department of Mathematics, Southern University of Science and Technology of China, Shenzhen 518055, China

3. 

Mathematics Department, Tulane University, New Orleans, LA 70118, USA

4. 

Institute of Mathematics, University of Mainz, Staudingerweg 9, 55099 Mainz, Germany

* Corresponding author: Alina Chertock

Received  February 2018 Published  July 2018

In this paper, we study two-dimensional multiscale chemotaxis models based on a combination of the macroscopic evolution equation for chemoattractant and microscopic models for cell evolution. The latter is governed by a Boltzmann-type kinetic equation with a local turning kernel operator which describes the velocity change of the cells. The parabolic scaling yields a non-dimensional kinetic model with a small parameter, which represents the mean free path of the cells. We propose a new asymptotic preserving numerical scheme that reflects the convergence of the studied micro-macro model to its macroscopic counterpart-the Patlak-Keller-Segel system-in the singular limit. The method is based on the operator splitting strategy and a suitable combination of the higher-order implicit and explicit time discretizations. In particular, we use the so-called even-odd decoupling and approximate the stiff terms arising in the singular limit implicitly. We prove that the resulting scheme satisfies the asymptotic preserving property. More precisely, it yields a consistent approximation of the Patlak-Keller-Segel system as the mean-free path tends to 0. The derived asymptotic preserving method is used to get better insight to the blowup behavior of two-dimensional kinetic chemotaxis model.

Citation: Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009
References:
[1]

W. Alt, Biased random walk models for chemotaxis and related diffusion approximations, J. Math. Biol., 9 (1980), 147-177. doi: 10.1007/BF00275919.

[2]

A. BollermannS. Noelle and M. Lukáčová-Medviďová, Finite volume evolution Galerkin methods for the shallow water equations with dry beds, Commun. Comput. Phys., 10 (2011), 371-404. doi: 10.4208/cicp.220210.020710a.

[3]

N. Bournaveas and V. Calvez, Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data, in Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol. 26, Elsevier, 2009, 1871–1895. doi: 10.1016/j.anihpc.2009.02.001.

[4]

V. Calvez and J. A. Carrillo, Volume effects in the Keller-Segel model: Energy estimates preventing blow-up, J. Math. Pures Appl. (9), 86 (2006), 155-175. doi: 10.1016/j.matpur.2006.04.002.

[5]

V. Calvez, B. Perthame and M. Sharifi Tabar, Modified Keller-Segel system and critical mass for the log interaction kernel, in Stochastic Analysis and Partial Differential Equations, vol. 429 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2007, 45–62. doi: 10.1090/conm/429/08229.

[6]

J. A. Carrillo and B. Yan, An asymptotic preserving scheme for the diffusive limit of kinetic systems for chemotaxis, Multiscale Modeling & Simulation, 11 (2013), 336-361. doi: 10.1137/110851687.

[7]

F. A. C. C. ChalubP. A. MarkowichB. Perthame and C. Schmeiser, Kinetic models for chemotaxis and their drift-diffusion limits, Monatsh. Math., 142 (2004), 123-141. doi: 10.1007/s00605-004-0234-7.

[8]

A. Chertock and A. Kurganov, A positivity preserving central-upwind scheme for chemotaxis and haptotaxis models, Numer. Math., 111 (2008), 169-205. doi: 10.1007/s00211-008-0188-0.

[9]

A. Chertock, A. Kurganov, X. Wang and Y. Wu, On a chemotaxis model with saturated chemotactic flux, Kinetic and Related Models, 5 (2012), 51–95, URL http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=6915. doi: 10.3934/krm.2012.5.51.

[10]

S. Childress and J. Percus, Nonlinear aspects of chemotaxis, Math. Biosc., 56 (1981), 217-237. doi: 10.1016/0025-5564(81)90055-9.

[11]

A. Crestetto, N. Crouseilles and M. Lemou, Asymptotic-preserving scheme based on a finite volume/particle-in-cell coupling for Boltzmann-BGK-like equations in the diffusion scaling, in Finite Volumes for Complex Applications. VII. Elliptic, Parabolic and Hyperbolic Problems, vol. 78 of Springer Proc. Math. Stat., Springer, Cham, 2014,827–835. doi: 10.1007/978-3-319-05591-6_83.

[12]

N. Crouseilles and M. Lemou, An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits, Kinet. Relat. Models, 4 (2011), 441-477. doi: 10.3934/krm.2011.4.441.

[13]

G. Dimarco and L. Pareschi, Asymptotic preserving implicit-explicit Runge-Kutta methods for nonlinear kinetic equations, SIAM J. Numer. Anal., 51 (2013), 1064-1087. doi: 10.1137/12087606X.

[14]

F. Filbet and S. Jin, A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources, J. Comput. Phys., 229 (2010), 7625-7648. doi: 10.1016/j.jcp.2010.06.017.

[15]

F. FilbetP. Laurençot and B. Perthame, Derivation of hyperbolic models for chemosensitive movement, Journal of Mathematical Biology, 50 (2005), 189-207. doi: 10.1007/s00285-004-0286-2.

[16]

H. GajewskiK. Zacharias and K. Gröger, Global behaviour of a reaction-diffusion system modelling chemotaxis, Mathematische Nachrichten, 195 (1998), 77-114. doi: 10.1002/mana.19981950106.

[17]

S. GottliebC.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev., 43 (2001), 89-112. doi: 10.1137/S003614450036757X.

[18]

S. Gottlieb, D. I. Ketcheson and C.-W. Shu, Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011. doi: 10.1142/7498.

[19]

S. GuissetS. BrullE. D'Humières and B. Dubroca, Asymptotic-preserving well-balanced scheme for the electronic $ M_1$ model in the diffusive limit: particular cases, ESAIM Math. Model. Numer. Anal., 51 (2017), 1805-1826. doi: 10.1051/m2an/2016079.

[20]

M. Herrero and J. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Normale Superiore, 24 (1997), 633-683.

[21]

M. A. HerreroE. Medina and J. Velázquez, Finite-time aggregation into a single point in a reaction-diffusion system, Nonlinearity, 10 (1997), 1739-1754. doi: 10.1088/0951-7715/10/6/016.

[22]

M. A. Herrero and J. J. Velázquez, Chemotactic collapse for the Keller-Segel model, Journal of Mathematical Biology, 35 (1996), 177-194. doi: 10.1007/s002850050049.

[23]

T. Hillen and H. G. Othmer, The diffusion limit of transport equations derived from velocity-jump processes, SIAM J. Appl. Math., 61 (2000), 751-775 (electronic). doi: 10.1137/S0036139999358167.

[24]

T. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. in Appl. Math., 26 (2001), 280-301. doi: 10.1006/aama.2001.0721.

[25]

T. HillenK. Painter and C. Schmeiser, Global existence for chemotaxis with finite sampling radius, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 125-144. doi: 10.3934/dcdsb.2007.7.125.

[26]

T. Hillen and K. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.

[27]

D. Horstmann, From 1970 until now: The Keller-Segel model in chemotaxis and its consequences ⅰ, Jahresber. DMV, 105 (2003), 103-165.

[28]

D. Horstmann, From 1970 until now: The Keller-Segel model in chemotaxis and its consequences ⅱ, Jahresber. DMV, 106 (2004), 51-69.

[29]

J. HuS. Jin and L. Wang, An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: a splitting approach, Kinet. Relat. Models, 8 (2015), 707-723. doi: 10.3934/krm.2015.8.707.

[30]

J. HuQ. Li and L. Pareschi, Asymptotic-preserving exponential methods for the quantum Boltzmann equation with high-order accuracy, J. Sci. Comput., 62 (2015), 555-574. doi: 10.1007/s10915-014-9869-2.

[31]

H. J. HwangK. Kang and A. Stevens, Drift-diffusion limits of kinetic models for chemotaxis: A generalization, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 319-334. doi: 10.3934/dcdsb.2005.5.319.

[32]

H. J. HwangK. Kang and A. Stevens, Global solutions of nonlinear transport equations for chemosensitive movement, SIAM Journal on Mathematical Analysis, 36 (2005), 1177-1199. doi: 10.1137/S0036141003431888.

[33]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Transactions of the American Mathematical Society, 329 (1992), 819-824. doi: 10.1090/S0002-9947-1992-1046835-6.

[34]

J. JangF. LiJ.-M. Qiu and T. Xiong, Analysis of asymptotic preserving DG-IMEX schemes for linear kinetic transport equations in a diffusive scaling, SIAM J. Numer. Anal., 52 (2014), 2048-2072. doi: 10.1137/130938955.

[35]

S. Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: A review, Riv. Mat. Univ. Parma, 3 (2012), 177-216.

[36]

S. JinL. Pareschi and G. Toscani, Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations, SIAM J. Numer. Anal., 35 (1998), 2405-2439 (electronic). doi: 10.1137/S0036142997315962.

[37]

S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM Journal on Scientific Computing, 21 (1999), 441-454. doi: 10.1137/S1064827598334599.

[38]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.

[39]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234. doi: 10.1016/0022-5193(71)90050-6.

[40]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235-248. doi: 10.1016/0022-5193(71)90051-8.

[41]

A. Klar, Asymptotic-induced domain decomposition methods for kinetic and drift diffusion semiconductor equations, SIAM J. Sci. Comput., 19 (1998), 2032-2050. doi: 10.1137/S1064827595286177.

[42]

A. Kurganov and M. Lukáčová-Medviďová, Numerical study of two-species chemotaxis models, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 131-152. doi: 10.3934/dcdsb.2014.19.131.

[43]

M. Lemou and L. Mieussens, A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit, SIAM J. Sci. Comput., 31 (2008), 334-368. doi: 10.1137/07069479X.

[44]

G. I. Marchuk, Metody Rasshchepleniya, (Russian) [Splitting Methods] "Nauka", Moscow, 1988.

[45]

G. I. Marchuk, Splitting and alternating direction methods, in Handbook of numerical analysis, Vol. I, Handb. Numer. Anal., I, North-Holland, Amsterdam, 1990,197–462.

[46]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis intwo-dimensional domains, J. Inequal. Appl., 6 (2001), 37–55, URL http://www.emis.ams.org/journals/HOA/JIA/Volume6_1/55.pdf. doi: 10.1155/S1025583401000042.

[47]

H. G. Othmer and T. Hillen, The diffusion limit of transport equations. Ⅱ. Chemotaxis equations, SIAM J. Appl. Math., 62 (2002), 1222-1250 (electronic). doi: 10.1137/S0036139900382772.

[48]

H. OthmerS. Dunbar and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988), 263-298. doi: 10.1007/BF00277392.

[49]

C. Patlak, Random walk with persistence and external bias, Bull. Math: Biophys., 15 (1953), 311-338. doi: 10.1007/BF02476407.

[50]

B. Perthame, PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic, Appl. Math., 49 (2004), 539-564. doi: 10.1007/s10492-004-6431-9.

[51]

C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77 (1988), 439-471. doi: 10.1016/0021-9991(88)90177-5.

[52]

A. Stevens and H. G. Othmer, Aggregation, blowup, and collapse: the ABC's of taxis in reinforced random walks, SIAM Journal on Applied Mathematics, 57 (1997), 1044-1081. doi: 10.1137/S0036139995288976.

[53]

G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5 (1968), 506-517. doi: 10.1137/0705041.

[54]

D. W. Stroock, Some stochastic processes which arise from a model of the motion of a bacterium, Probability Theory and Related Fields, 28 (1974), 305-315. doi: 10.1007/BF00532948.

show all references

References:
[1]

W. Alt, Biased random walk models for chemotaxis and related diffusion approximations, J. Math. Biol., 9 (1980), 147-177. doi: 10.1007/BF00275919.

[2]

A. BollermannS. Noelle and M. Lukáčová-Medviďová, Finite volume evolution Galerkin methods for the shallow water equations with dry beds, Commun. Comput. Phys., 10 (2011), 371-404. doi: 10.4208/cicp.220210.020710a.

[3]

N. Bournaveas and V. Calvez, Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data, in Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol. 26, Elsevier, 2009, 1871–1895. doi: 10.1016/j.anihpc.2009.02.001.

[4]

V. Calvez and J. A. Carrillo, Volume effects in the Keller-Segel model: Energy estimates preventing blow-up, J. Math. Pures Appl. (9), 86 (2006), 155-175. doi: 10.1016/j.matpur.2006.04.002.

[5]

V. Calvez, B. Perthame and M. Sharifi Tabar, Modified Keller-Segel system and critical mass for the log interaction kernel, in Stochastic Analysis and Partial Differential Equations, vol. 429 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2007, 45–62. doi: 10.1090/conm/429/08229.

[6]

J. A. Carrillo and B. Yan, An asymptotic preserving scheme for the diffusive limit of kinetic systems for chemotaxis, Multiscale Modeling & Simulation, 11 (2013), 336-361. doi: 10.1137/110851687.

[7]

F. A. C. C. ChalubP. A. MarkowichB. Perthame and C. Schmeiser, Kinetic models for chemotaxis and their drift-diffusion limits, Monatsh. Math., 142 (2004), 123-141. doi: 10.1007/s00605-004-0234-7.

[8]

A. Chertock and A. Kurganov, A positivity preserving central-upwind scheme for chemotaxis and haptotaxis models, Numer. Math., 111 (2008), 169-205. doi: 10.1007/s00211-008-0188-0.

[9]

A. Chertock, A. Kurganov, X. Wang and Y. Wu, On a chemotaxis model with saturated chemotactic flux, Kinetic and Related Models, 5 (2012), 51–95, URL http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=6915. doi: 10.3934/krm.2012.5.51.

[10]

S. Childress and J. Percus, Nonlinear aspects of chemotaxis, Math. Biosc., 56 (1981), 217-237. doi: 10.1016/0025-5564(81)90055-9.

[11]

A. Crestetto, N. Crouseilles and M. Lemou, Asymptotic-preserving scheme based on a finite volume/particle-in-cell coupling for Boltzmann-BGK-like equations in the diffusion scaling, in Finite Volumes for Complex Applications. VII. Elliptic, Parabolic and Hyperbolic Problems, vol. 78 of Springer Proc. Math. Stat., Springer, Cham, 2014,827–835. doi: 10.1007/978-3-319-05591-6_83.

[12]

N. Crouseilles and M. Lemou, An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits, Kinet. Relat. Models, 4 (2011), 441-477. doi: 10.3934/krm.2011.4.441.

[13]

G. Dimarco and L. Pareschi, Asymptotic preserving implicit-explicit Runge-Kutta methods for nonlinear kinetic equations, SIAM J. Numer. Anal., 51 (2013), 1064-1087. doi: 10.1137/12087606X.

[14]

F. Filbet and S. Jin, A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources, J. Comput. Phys., 229 (2010), 7625-7648. doi: 10.1016/j.jcp.2010.06.017.

[15]

F. FilbetP. Laurençot and B. Perthame, Derivation of hyperbolic models for chemosensitive movement, Journal of Mathematical Biology, 50 (2005), 189-207. doi: 10.1007/s00285-004-0286-2.

[16]

H. GajewskiK. Zacharias and K. Gröger, Global behaviour of a reaction-diffusion system modelling chemotaxis, Mathematische Nachrichten, 195 (1998), 77-114. doi: 10.1002/mana.19981950106.

[17]

S. GottliebC.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev., 43 (2001), 89-112. doi: 10.1137/S003614450036757X.

[18]

S. Gottlieb, D. I. Ketcheson and C.-W. Shu, Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011. doi: 10.1142/7498.

[19]

S. GuissetS. BrullE. D'Humières and B. Dubroca, Asymptotic-preserving well-balanced scheme for the electronic $ M_1$ model in the diffusive limit: particular cases, ESAIM Math. Model. Numer. Anal., 51 (2017), 1805-1826. doi: 10.1051/m2an/2016079.

[20]

M. Herrero and J. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Normale Superiore, 24 (1997), 633-683.

[21]

M. A. HerreroE. Medina and J. Velázquez, Finite-time aggregation into a single point in a reaction-diffusion system, Nonlinearity, 10 (1997), 1739-1754. doi: 10.1088/0951-7715/10/6/016.

[22]

M. A. Herrero and J. J. Velázquez, Chemotactic collapse for the Keller-Segel model, Journal of Mathematical Biology, 35 (1996), 177-194. doi: 10.1007/s002850050049.

[23]

T. Hillen and H. G. Othmer, The diffusion limit of transport equations derived from velocity-jump processes, SIAM J. Appl. Math., 61 (2000), 751-775 (electronic). doi: 10.1137/S0036139999358167.

[24]

T. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. in Appl. Math., 26 (2001), 280-301. doi: 10.1006/aama.2001.0721.

[25]

T. HillenK. Painter and C. Schmeiser, Global existence for chemotaxis with finite sampling radius, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 125-144. doi: 10.3934/dcdsb.2007.7.125.

[26]

T. Hillen and K. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.

[27]

D. Horstmann, From 1970 until now: The Keller-Segel model in chemotaxis and its consequences ⅰ, Jahresber. DMV, 105 (2003), 103-165.

[28]

D. Horstmann, From 1970 until now: The Keller-Segel model in chemotaxis and its consequences ⅱ, Jahresber. DMV, 106 (2004), 51-69.

[29]

J. HuS. Jin and L. Wang, An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: a splitting approach, Kinet. Relat. Models, 8 (2015), 707-723. doi: 10.3934/krm.2015.8.707.

[30]

J. HuQ. Li and L. Pareschi, Asymptotic-preserving exponential methods for the quantum Boltzmann equation with high-order accuracy, J. Sci. Comput., 62 (2015), 555-574. doi: 10.1007/s10915-014-9869-2.

[31]

H. J. HwangK. Kang and A. Stevens, Drift-diffusion limits of kinetic models for chemotaxis: A generalization, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 319-334. doi: 10.3934/dcdsb.2005.5.319.

[32]

H. J. HwangK. Kang and A. Stevens, Global solutions of nonlinear transport equations for chemosensitive movement, SIAM Journal on Mathematical Analysis, 36 (2005), 1177-1199. doi: 10.1137/S0036141003431888.

[33]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Transactions of the American Mathematical Society, 329 (1992), 819-824. doi: 10.1090/S0002-9947-1992-1046835-6.

[34]

J. JangF. LiJ.-M. Qiu and T. Xiong, Analysis of asymptotic preserving DG-IMEX schemes for linear kinetic transport equations in a diffusive scaling, SIAM J. Numer. Anal., 52 (2014), 2048-2072. doi: 10.1137/130938955.

[35]

S. Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: A review, Riv. Mat. Univ. Parma, 3 (2012), 177-216.

[36]

S. JinL. Pareschi and G. Toscani, Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations, SIAM J. Numer. Anal., 35 (1998), 2405-2439 (electronic). doi: 10.1137/S0036142997315962.

[37]

S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM Journal on Scientific Computing, 21 (1999), 441-454. doi: 10.1137/S1064827598334599.

[38]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.

[39]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234. doi: 10.1016/0022-5193(71)90050-6.

[40]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235-248. doi: 10.1016/0022-5193(71)90051-8.

[41]

A. Klar, Asymptotic-induced domain decomposition methods for kinetic and drift diffusion semiconductor equations, SIAM J. Sci. Comput., 19 (1998), 2032-2050. doi: 10.1137/S1064827595286177.

[42]

A. Kurganov and M. Lukáčová-Medviďová, Numerical study of two-species chemotaxis models, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 131-152. doi: 10.3934/dcdsb.2014.19.131.

[43]

M. Lemou and L. Mieussens, A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit, SIAM J. Sci. Comput., 31 (2008), 334-368. doi: 10.1137/07069479X.

[44]

G. I. Marchuk, Metody Rasshchepleniya, (Russian) [Splitting Methods] "Nauka", Moscow, 1988.

[45]

G. I. Marchuk, Splitting and alternating direction methods, in Handbook of numerical analysis, Vol. I, Handb. Numer. Anal., I, North-Holland, Amsterdam, 1990,197–462.

[46]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis intwo-dimensional domains, J. Inequal. Appl., 6 (2001), 37–55, URL http://www.emis.ams.org/journals/HOA/JIA/Volume6_1/55.pdf. doi: 10.1155/S1025583401000042.

[47]

H. G. Othmer and T. Hillen, The diffusion limit of transport equations. Ⅱ. Chemotaxis equations, SIAM J. Appl. Math., 62 (2002), 1222-1250 (electronic). doi: 10.1137/S0036139900382772.

[48]

H. OthmerS. Dunbar and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988), 263-298. doi: 10.1007/BF00277392.

[49]

C. Patlak, Random walk with persistence and external bias, Bull. Math: Biophys., 15 (1953), 311-338. doi: 10.1007/BF02476407.

[50]

B. Perthame, PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic, Appl. Math., 49 (2004), 539-564. doi: 10.1007/s10492-004-6431-9.

[51]

C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77 (1988), 439-471. doi: 10.1016/0021-9991(88)90177-5.

[52]

A. Stevens and H. G. Othmer, Aggregation, blowup, and collapse: the ABC's of taxis in reinforced random walks, SIAM Journal on Applied Mathematics, 57 (1997), 1044-1081. doi: 10.1137/S0036139995288976.

[53]

G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5 (1968), 506-517. doi: 10.1137/0705041.

[54]

D. W. Stroock, Some stochastic processes which arise from a model of the motion of a bacterium, Probability Theory and Related Fields, 28 (1974), 305-315. doi: 10.1007/BF00532948.

Figure 1.  $ \verb"Example 1: Behavior of"$ $||\rho||_\infty/M$ $ \verb"in time for varying values of"$ $M$; $N_x = N_y = 128$
Figure 2.  $ \verb"Example 1: Behavior of"$ $||\rho||_\infty$ $ \verb"in time for"$ $M = 7$ $ \verb"(left) and"$ $M = 9$ $ \verb"(right) on three consecutive meshes"$
Figure 3.  $ \verb"Example 2a: Behavior of"$ $||\rho||_\infty$ $ \verb"in time for"$ $M = 1$ $ \verb"(left)"$, $M = 8$ $ \verb"(middle) and"$ $M = 11$ $ \verb"(right) on four consecutive meshes"$
Figure 4.  $ \verb"Example 2a: The density"$ $\rho(x,y,T = 0.0005)$ $ \verb"for"$ $M = 11$ $ \verb"computed on the meshes with:"$ $N_x = N_y = 128$ $ \verb"(left) and"$ $N_x = N_y = 256$ $ \verb"(right)"$
Figure 5.  $ \verb"Example 2b: Behavior of"$ $||\rho||_\infty$ $ \verb"in time for"$ $M = 8$ $ \verb"(left)"$, $M = 9.5$ $ \verb"(middle) and"$ $M = 11$ $ \verb"(right) on three consecutive meshes"$
Figure 6.  $ \verb"Example 3: The displacement of the density for"$ $M = 3$
Figure 7.  $ \verb"Example 3: The displacement of the density for"$ $M = 7$
Figure 8.  $ \verb"Example 3: The displacement of the density for"$ $M = 11$
Table 1.  $ \verb"Example 2b:"$ $L^\infty$- $ \verb"errors for"$ $M = 8, 9.5$ $ \verb"and"$ $11$ $ \verb"(from left to right)"$
$M=8$ $M=9.5$ $M=11$
$N$ $||e_{2N}||_\infty$ rate$_{4N}$ $||e_{2N}||_\infty$ rate$_{4N}$ $||e_{2N}||_\infty$ rate$_{4N}$
32 1.5680E-02 - 2.9056E-02 - 4.9613E-02 -
64 3.2150E-03 2.2860 8.1861E-03 1.8276 1.6752E-02 1.5663
128 8.4486E-04 1.9280 2.1204E-03 1.9488 4.5867E-03 1.8688
256 2.0985E-04 2.0093 5.3892E-04 1.9761 1.1662E-03 1.9756
$M=8$ $M=9.5$ $M=11$
$N$ $||e_{2N}||_\infty$ rate$_{4N}$ $||e_{2N}||_\infty$ rate$_{4N}$ $||e_{2N}||_\infty$ rate$_{4N}$
32 1.5680E-02 - 2.9056E-02 - 4.9613E-02 -
64 3.2150E-03 2.2860 8.1861E-03 1.8276 1.6752E-02 1.5663
128 8.4486E-04 1.9280 2.1204E-03 1.9488 4.5867E-03 1.8688
256 2.0985E-04 2.0093 5.3892E-04 1.9761 1.1662E-03 1.9756
[1]

Alina Chertock, Changhui Tan, Bokai Yan. An asymptotic preserving scheme for kinetic models with singular limit. Kinetic & Related Models, 2018, 11 (4) : 735-756. doi: 10.3934/krm.2018030

[2]

Jeffrey R. Haack, Cory D. Hauck. Oscillatory behavior of Asymptotic-Preserving splitting methods for a linear model of diffusive relaxation. Kinetic & Related Models, 2008, 1 (4) : 573-590. doi: 10.3934/krm.2008.1.573

[3]

Lijian Jiang, Yalchin Efendiev, Victor Ginting. Multiscale methods for parabolic equations with continuum spatial scales. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 833-859. doi: 10.3934/dcdsb.2007.8.833

[4]

Nicolas Crouseilles, Mohammed Lemou, SV Raghurama Rao, Ankit Ruhi, Muddu Sekhar. Asymptotic preserving scheme for a kinetic model describing incompressible fluids. Kinetic & Related Models, 2016, 9 (1) : 51-74. doi: 10.3934/krm.2016.9.51

[5]

H.J. Hwang, K. Kang, A. Stevens. Drift-diffusion limits of kinetic models for chemotaxis: A generalization. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 319-334. doi: 10.3934/dcdsb.2005.5.319

[6]

Jingwei Hu, Shi Jin. On kinetic flux vector splitting schemes for quantum Euler equations. Kinetic & Related Models, 2011, 4 (2) : 517-530. doi: 10.3934/krm.2011.4.517

[7]

Jingwei Hu, Shi Jin, Li Wang. An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: A splitting approach. Kinetic & Related Models, 2015, 8 (4) : 707-723. doi: 10.3934/krm.2015.8.707

[8]

Walter Allegretto, Liqun Cao, Yanping Lin. Multiscale asymptotic expansion for second order parabolic equations with rapidly oscillating coefficients. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 543-576. doi: 10.3934/dcds.2008.20.543

[9]

Yunmei Chen, Xianqi Li, Yuyuan Ouyang, Eduardo Pasiliao. Accelerated bregman operator splitting with backtracking. Inverse Problems & Imaging, 2017, 11 (6) : 1047-1070. doi: 10.3934/ipi.2017048

[10]

Nicola Bellomo, Abdelghani Bellouquid, Juanjo Nieto, Juan Soler. On the multiscale modeling of vehicular traffic: From kinetic to hydrodynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1869-1888. doi: 10.3934/dcdsb.2014.19.1869

[11]

Nicolas Vauchelet. Numerical simulation of a kinetic model for chemotaxis. Kinetic & Related Models, 2010, 3 (3) : 501-528. doi: 10.3934/krm.2010.3.501

[12]

Liejune Shiau, Roland Glowinski. Operator splitting method for friction constrained dynamical systems. Conference Publications, 2005, 2005 (Special) : 806-815. doi: 10.3934/proc.2005.2005.806

[13]

N. Bellomo, A. Bellouquid. From a class of kinetic models to the macroscopic equations for multicellular systems in biology. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 59-80. doi: 10.3934/dcdsb.2004.4.59

[14]

Niclas Bernhoff. Boundary layers for discrete kinetic models: Multicomponent mixtures, polyatomic molecules, bimolecular reactions, and quantum kinetic equations. Kinetic & Related Models, 2017, 10 (4) : 925-955. doi: 10.3934/krm.2017037

[15]

Assyr Abdulle. Multiscale methods for advection-diffusion problems. Conference Publications, 2005, 2005 (Special) : 11-21. doi: 10.3934/proc.2005.2005.11

[16]

Alexander Mielke. Weak-convergence methods for Hamiltonian multiscale problems. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 53-79. doi: 10.3934/dcds.2008.20.53

[17]

Florian Schneider, Jochen Kall, Graham Alldredge. A realizability-preserving high-order kinetic scheme using WENO reconstruction for entropy-based moment closures of linear kinetic equations in slab geometry. Kinetic & Related Models, 2016, 9 (1) : 193-215. doi: 10.3934/krm.2016.9.193

[18]

Lukas Einkemmer, Alexander Ostermann. A comparison of boundary correction methods for Strang splitting. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2641-2660. doi: 10.3934/dcdsb.2018081

[19]

Julian Koellermeier, Roman Pascal Schaerer, Manuel Torrilhon. A framework for hyperbolic approximation of kinetic equations using quadrature-based projection methods. Kinetic & Related Models, 2014, 7 (3) : 531-549. doi: 10.3934/krm.2014.7.531

[20]

Elena Celledoni, Brynjulf Owren. Preserving first integrals with symmetric Lie group methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 977-990. doi: 10.3934/dcds.2014.34.977

[Back to Top]