February 2019, 12(1): 133-158. doi: 10.3934/krm.2019006

Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations

1. 

Ecole Normale Supérieure de Lyon, UMPA, ENS-Lyon, 46, allée d'Italie, 69364-Lyon Cedex 07, France

2. 

Istituto per le Applicazioni del Calcolo "Mauro Picone", Consiglio Nazionale delle Ricerche, via dei Taurini 19, I-00185 Rome, Italy

* Corresponding author: Roberto Natalini

Received  July 2017 Published  July 2018

Fund Project: The first author was supported by a Ph. D. grant of University of Rome Tor Vergata

We present a rigorous convergence result for smooth solutions to a singular semilinear hyperbolic approximation, called vector-BGK model, to the solutions to the incompressible Navier-Stokes equations in Sobolev spaces. Our proof deeply relies on the dissipative properties of the system and on the use of an energy which is provided by a symmetrizer, whose entries are weighted in a suitable way with respect to the singular perturbation parameter. This strategy allows us to perform uniform energy estimates and to prove the convergence by compactness.

Citation: Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic & Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006
References:
[1]

D. Aregba-Driollet and R. Natalini, Discrete Kinetic Schemes for Multidimensional Conservation Laws, SIAM J. Num. Anal., 37 (2000), 1973-2004. doi: 10.1137/S0036142998343075.

[2]

D. Aregba-DriolletR. Natalini and S. Q. Tang, Diffusive kinetic explicit schemes for nonlinear degenerate parabolic systems, Math. Comp., 73 (2004), 63-94.

[3]

C. BardosF. Golse and C. D. Levermore, Fluid dynamic limits of hyperbolic equations. Ⅰ. Formal derivations, J. Stat. Phys., 63 (1991), 323-344. doi: 10.1007/BF01026608.

[4]

C. BardosF. Golse and C. D. Levermore, Fluid dynamic limits of kinetic equations - Ⅱ Convergence proofs for the Boltzmann-equation, Comm. Pure Appl. Math., 46 (1993), 667-753. doi: 10.1002/cpa.3160460503.

[5]

S. Benzoni-Gavage and D. Serre, Multidimensional Hyperbolic Partial Differential Equations, Oxford University Press, 2007

[6]

A. Bertozzi and A. Majda, Vorticity and Incompressible Flow, Cambridge University Press, 2002.

[7]

S. BianchiniB. Hanouzet and R. Natalini, Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Comm. Pure Appl. Math., 60 (2007), 1559-1622. doi: 10.1002/cpa.20195.

[8]

F. Bouchut, Construction of BGK Models with a Family of Kinetic Entropies for a Given System of Conservation Laws, J. of Stat. Phys., 95 (1999), 113-170. doi: 10.1023/A:1004525427365.

[9]

F. BouchutF. Guarguaglini and R. Natalini, Diffusive BGK Approximations for Nonlinear Multidimensional Parabolic Equations, Indiana Univ. Math. J., 49 (2000), 723-749. doi: 10.1512/iumj.2000.49.1811.

[10]

F. BouchutY. JobicR. NataliniR. Occelli and V. Pavan, Second-order entropy satisfying BGK-FVS schemes for incompressible Navier-Stokes equations, SMAI Journal of Computational Mathematics, 4 (2018), 1-56. doi: 10.5802/smai-jcm.28.

[11]

Y. Brenier, Averaged multivalued solutions for scalar conservation laws, SIAM J. Numer. Anal., 21 (1984), 1013-1037. doi: 10.1137/0721063.

[12]

Y. BrenierR. Natalini and M. Puel, On a relaxation approximation of the incompressible Navier-Stokes equations, Proc. Amer. Math. Soc., 132 (2004), 1021-1028. doi: 10.1090/S0002-9939-03-07230-7.

[13]

M. Carfora and R. Natalini, A discrete kinetic approximation for the incompressible Navier-Stokes equations, ESAIM: Math. Modelling Numer. Anal., 42 (2008), 93-112. doi: 10.1051/m2an:2007055.

[14]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4419-8524-8.

[15]

A. DeMasiR. Esposito and J. Lebowitz, Incompressible Navier-Stokes and Euler Limits of the Boltzmann equation, Comm. Pure Appl. Math., 42 (1989), 1189-1214. doi: 10.1002/cpa.3160420810.

[16]

F. Golse, C. D. Levermore and L. Saint-Raymond, La méthode de l'entropie relative pour les limites hydrodynamiques de modèles cinétiques, Séminaire Équations Aux Dérivées Partielles (2000), 23pp.

[17]

F. Golse and L. Saint-Raymond, The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels, Invent. math., 155 (2004), 81-161. doi: 10.1007/s00222-003-0316-5.

[18]

I. Hachicha, Approximations Hyperboliques des Équations de Navier-Stokes, Ph. D. Thesis, Université d'Évry-Val d'Essone, 2013.

[19]

I. Hachicha, Global existence for a damped wave equation and convergence towards a solution of the Navier-Stokes problem, Nonlinear Anal., 96 (2014), 68-86. doi: 10.1016/j.na.2013.10.020.

[20]

B. Hanouzet and R. Natalini, Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Nonlinear Anal., 96 (2014), 68-86. doi: 10.1007/s00205-003-0257-6.

[21]

S. Jin and Z. Xin, The relaxation schemes for system of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math., 48 (1995), 235-276. doi: 10.1002/cpa.3160480303.

[22]

M. Junk and W.-A- Yong, Rigorous Navier-Stokes Limit of the Lattice Boltzmann Equation, Asymptotic Anal., 35 (2003), 165-185.

[23]

C. Lattanzio and R. Natalini, Convergence of diffusive BGK approximations for nonlinear strongly parabolic systems, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 341-358. doi: 10.1017/S0308210500001669.

[24]

P. L. Lions and G. Toscani, Diffusive limits for finite velocity Boltzmann kinetic models, Revista Mat. Iberoamer., 13 (1997), 473-513. doi: 10.4171/RMI/228.

[25]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-1116-7.

[26]

R. Natalini, A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws, J. Diff. Eq., 148 (1998), 292-317. doi: 10.1006/jdeq.1998.3460.

[27]

M. Paicu and G. Raugel, A hyperbolic perturbation of the Navier-Stokes equations, (Une perturbation hyperbolique des equations de Navier-Stokes.), ESAIM, Proc., 21 (2007), 65-87. doi: 10.1051/proc:072106.

[28]

B. Perthame, Kinetic Formulation of Conservation Laws, Oxford Lecture Series in Mathematics and its Applications, 21, Oxford University Press, 2002.

[29]

L. Saint-Raymond, From the BGK model to the Navier-Stokes equations, Annales Scientifiques de l'École Normale Supérieure, 36 (2003), 271-317. doi: 10.1016/S0012-9593(03)00010-7.

[30]

S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Numerical Mathematics and Scientific Computation, Oxford Science Publications, the Clarendon Press, Oxford University Press, New York, 2001.

[31]

D. A. Wolf-Gladrow, Lattice-gas Cellular Automata and Lattice Boltzmann models. An introduction, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2000. doi: 10.1007/b72010.

show all references

References:
[1]

D. Aregba-Driollet and R. Natalini, Discrete Kinetic Schemes for Multidimensional Conservation Laws, SIAM J. Num. Anal., 37 (2000), 1973-2004. doi: 10.1137/S0036142998343075.

[2]

D. Aregba-DriolletR. Natalini and S. Q. Tang, Diffusive kinetic explicit schemes for nonlinear degenerate parabolic systems, Math. Comp., 73 (2004), 63-94.

[3]

C. BardosF. Golse and C. D. Levermore, Fluid dynamic limits of hyperbolic equations. Ⅰ. Formal derivations, J. Stat. Phys., 63 (1991), 323-344. doi: 10.1007/BF01026608.

[4]

C. BardosF. Golse and C. D. Levermore, Fluid dynamic limits of kinetic equations - Ⅱ Convergence proofs for the Boltzmann-equation, Comm. Pure Appl. Math., 46 (1993), 667-753. doi: 10.1002/cpa.3160460503.

[5]

S. Benzoni-Gavage and D. Serre, Multidimensional Hyperbolic Partial Differential Equations, Oxford University Press, 2007

[6]

A. Bertozzi and A. Majda, Vorticity and Incompressible Flow, Cambridge University Press, 2002.

[7]

S. BianchiniB. Hanouzet and R. Natalini, Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Comm. Pure Appl. Math., 60 (2007), 1559-1622. doi: 10.1002/cpa.20195.

[8]

F. Bouchut, Construction of BGK Models with a Family of Kinetic Entropies for a Given System of Conservation Laws, J. of Stat. Phys., 95 (1999), 113-170. doi: 10.1023/A:1004525427365.

[9]

F. BouchutF. Guarguaglini and R. Natalini, Diffusive BGK Approximations for Nonlinear Multidimensional Parabolic Equations, Indiana Univ. Math. J., 49 (2000), 723-749. doi: 10.1512/iumj.2000.49.1811.

[10]

F. BouchutY. JobicR. NataliniR. Occelli and V. Pavan, Second-order entropy satisfying BGK-FVS schemes for incompressible Navier-Stokes equations, SMAI Journal of Computational Mathematics, 4 (2018), 1-56. doi: 10.5802/smai-jcm.28.

[11]

Y. Brenier, Averaged multivalued solutions for scalar conservation laws, SIAM J. Numer. Anal., 21 (1984), 1013-1037. doi: 10.1137/0721063.

[12]

Y. BrenierR. Natalini and M. Puel, On a relaxation approximation of the incompressible Navier-Stokes equations, Proc. Amer. Math. Soc., 132 (2004), 1021-1028. doi: 10.1090/S0002-9939-03-07230-7.

[13]

M. Carfora and R. Natalini, A discrete kinetic approximation for the incompressible Navier-Stokes equations, ESAIM: Math. Modelling Numer. Anal., 42 (2008), 93-112. doi: 10.1051/m2an:2007055.

[14]

C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4419-8524-8.

[15]

A. DeMasiR. Esposito and J. Lebowitz, Incompressible Navier-Stokes and Euler Limits of the Boltzmann equation, Comm. Pure Appl. Math., 42 (1989), 1189-1214. doi: 10.1002/cpa.3160420810.

[16]

F. Golse, C. D. Levermore and L. Saint-Raymond, La méthode de l'entropie relative pour les limites hydrodynamiques de modèles cinétiques, Séminaire Équations Aux Dérivées Partielles (2000), 23pp.

[17]

F. Golse and L. Saint-Raymond, The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels, Invent. math., 155 (2004), 81-161. doi: 10.1007/s00222-003-0316-5.

[18]

I. Hachicha, Approximations Hyperboliques des Équations de Navier-Stokes, Ph. D. Thesis, Université d'Évry-Val d'Essone, 2013.

[19]

I. Hachicha, Global existence for a damped wave equation and convergence towards a solution of the Navier-Stokes problem, Nonlinear Anal., 96 (2014), 68-86. doi: 10.1016/j.na.2013.10.020.

[20]

B. Hanouzet and R. Natalini, Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Nonlinear Anal., 96 (2014), 68-86. doi: 10.1007/s00205-003-0257-6.

[21]

S. Jin and Z. Xin, The relaxation schemes for system of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math., 48 (1995), 235-276. doi: 10.1002/cpa.3160480303.

[22]

M. Junk and W.-A- Yong, Rigorous Navier-Stokes Limit of the Lattice Boltzmann Equation, Asymptotic Anal., 35 (2003), 165-185.

[23]

C. Lattanzio and R. Natalini, Convergence of diffusive BGK approximations for nonlinear strongly parabolic systems, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 341-358. doi: 10.1017/S0308210500001669.

[24]

P. L. Lions and G. Toscani, Diffusive limits for finite velocity Boltzmann kinetic models, Revista Mat. Iberoamer., 13 (1997), 473-513. doi: 10.4171/RMI/228.

[25]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-1116-7.

[26]

R. Natalini, A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws, J. Diff. Eq., 148 (1998), 292-317. doi: 10.1006/jdeq.1998.3460.

[27]

M. Paicu and G. Raugel, A hyperbolic perturbation of the Navier-Stokes equations, (Une perturbation hyperbolique des equations de Navier-Stokes.), ESAIM, Proc., 21 (2007), 65-87. doi: 10.1051/proc:072106.

[28]

B. Perthame, Kinetic Formulation of Conservation Laws, Oxford Lecture Series in Mathematics and its Applications, 21, Oxford University Press, 2002.

[29]

L. Saint-Raymond, From the BGK model to the Navier-Stokes equations, Annales Scientifiques de l'École Normale Supérieure, 36 (2003), 271-317. doi: 10.1016/S0012-9593(03)00010-7.

[30]

S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Numerical Mathematics and Scientific Computation, Oxford Science Publications, the Clarendon Press, Oxford University Press, New York, 2001.

[31]

D. A. Wolf-Gladrow, Lattice-gas Cellular Automata and Lattice Boltzmann models. An introduction, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2000. doi: 10.1007/b72010.

[1]

Anna Amirdjanova, Jie Xiong. Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 651-666. doi: 10.3934/dcdsb.2006.6.651

[2]

Xue-Li Song, Yan-Ren Hou. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 239-252. doi: 10.3934/dcds.2011.31.239

[3]

Hi Jun Choe, Hyea Hyun Kim, Do Wan Kim, Yongsik Kim. Meshless method for the stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 495-526. doi: 10.3934/dcdsb.2001.1.495

[4]

Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067

[5]

Hi Jun Choe, Do Wan Kim, Yongsik Kim. Meshfree method for the non-stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 17-39. doi: 10.3934/dcdsb.2006.6.17

[6]

Linjie Xiong. Incompressible Limit of isentropic Navier-Stokes equations with Navier-slip boundary. Kinetic & Related Models, 2018, 11 (3) : 469-490. doi: 10.3934/krm.2018021

[7]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[8]

J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647

[9]

Franck Boyer, Pierre Fabrie. Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 219-250. doi: 10.3934/dcdsb.2007.7.219

[10]

Lihuai Du, Ting Zhang. Local and global strong solution to the stochastic 3-D incompressible anisotropic Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4745-4765. doi: 10.3934/dcds.2018209

[11]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[12]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[13]

Yinnian He, Pengzhan Huang, Jian Li. H2-stability of some second order fully discrete schemes for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-36. doi: 10.3934/dcdsb.2018273

[14]

Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349

[15]

Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433

[16]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[17]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[18]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[19]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

[20]

Susan Friedlander, Nataša Pavlović. Remarks concerning modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 269-288. doi: 10.3934/dcds.2004.10.269

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (46)
  • HTML views (159)
  • Cited by (0)

Other articles
by authors

[Back to Top]