February 2019, 12(1): 105-131. doi: 10.3934/krm.2019005

On hp-streamline diffusion and Nitsche schemes for the relativistic Vlasov-Maxwell system

1. 

Department of Mathematics, Chalmers University of Technology and Göteborg University, SE-412 96, Göteborg, Sweden

2. 

Institute of Applied Mathematics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland

3. 

Department of Mathematics, Chalmers University of Technology and Göteborg University, SE-412 96, Göteborg, Sweden

* Corresponding author: Mohammad Asadzadeh

Received  November 2017 Revised  May 2018 Published  July 2018

Fund Project: The research of the first author was supported by the Swedish Research Council VR

We study stability and convergence of $hp$-streamline diffusion (SD) finite element, and Nitsche's schemes for the three dimensional, relativistic (3 spatial dimension and 3 velocities), time dependent Vlasov-Maxwell system and Maxwell's equations, respectively. For the $hp$ scheme for the Vlasov-Maxwell system, assuming that the exact solution is in the Sobolev space $H^{s+1}(Ω)$, we derive global a priori error bound of order ${\mathcal O}(h/p)^{s+1/2}$, where $h ( = \max_K h_K)$ is the mesh parameter and $p ( = \max_K p_K)$ is the spectral order. This estimate is based on the local version with $h_K = \mbox{ diam } K$ being the diameter of the phase-space-time element $K$ and $p_K$ is the spectral order (the degree of approximating finite element polynomial) for $K$. As for the Nitsche's scheme, by a simple calculus of the field equations, first we convert the Maxwell's system to an elliptic type equation. Then, combining the Nitsche's method for the spatial discretization with a second order time scheme, we obtain optimal convergence of ${\mathcal O}(h^2+k^2)$, where $h$ is the spatial mesh size and $k$ is the time step. Here, as in the classical literature, the second order time scheme requires higher order regularity assumptions. Numerical justification of the results, in lower dimensions, is presented and is also the subject of a forthcoming computational work [22].

Citation: Mohammad Asadzadeh, Piotr Kowalczyk, Christoffer Standar. On hp-streamline diffusion and Nitsche schemes for the relativistic Vlasov-Maxwell system. Kinetic & Related Models, 2019, 12 (1) : 105-131. doi: 10.3934/krm.2019005
References:
[1]

M. Asadzadeh, Streamline diffusion methods for the Vlasov-Poisson equation, ESAIM: Math. Model. Numer. Anal., 24 (1990), 177-196. doi: 10.1051/m2an/1990240201771.

[2]

M. Asadzadeh and P. Kowalczyk, Convergence analysis of the streamline diffusion and discontinuous Galerkin methods for the Vlasov-Fokker-Planck system, Numer. Methods Partial Differential Equations, 21 (2005), 472-495. doi: 10.1002/num.20044.

[3]

M. Asadzadeh and P. Kowalczyk, Convergence analysis for backward-Euler and mixed discontinuous Galerkin methods for the Vlasov-Poisson system, Adv. Comput. Math., 41 (2015), 833-852. doi: 10.1007/s10444-014-9388-6.

[4]

M. Asadzadeh and A. Sopasakis, Convergence of a hp-streamline diffusion scheme for Vlasov-Fokker-Planck system, Math. Models Methods Appl. Sci., 17 (2007), 1159-1182. doi: 10.1142/S0218202507002236.

[5]

F. Assous and M. Michaeli, Solving Maxwell's equations in singular domains with a Nitsche type method, J. Comput. Phys., 230 (2011), 4922-4939. doi: 10.1016/j.jcp.2011.03.013.

[6]

N. Besse, Convergence of a high-order semi-Lagrangian scheme with propagation of gradients for the one-dimensional Vlasov-Poisson system, SIAM J. Numer. Anal., 46 (2008), 639-670. doi: 10.1137/050635171.

[7]

F. BrezziL. D. Marini and E. Süli, Discontinuous Galerkin methods for first-order hyperbolic problems, Math. Models Methods Appl. Sci., 14 (2004), 1893-1903. doi: 10.1142/S0218202504003866.

[8]

E. Burman and P. Hansbo, Fictitious domain finite element methods using cut elements: Ⅱ. A stabilized Nitsche method, Appl. Numer. Math., 62 (2012), 328-341. doi: 10.1016/j.apnum.2011.01.008.

[9]

F. CharlesB. Després and M. Mehrenberger, Enhanced convergence estimates for semi-Lagrangian schemes: Application to the Vlasov-Poisson equation, SIAM J. Numer. Anal., 51 (2013), 840-863. doi: 10.1137/110851511.

[10]

Y. ChengI. M. GambaF. Li and P. J. Morrison, Discontinuous Galerkin methods for the Vlasov-Maxwell equations, SIAM J. Numer. Anal., 52 (2014), 1017-1049. doi: 10.1137/130915091.

[11]

P. DegondF. Deluzet and D. Doyen, Asymptotic-preserving particle-in-cell methods for the Vlasov-Maxwell system in the quasi-neutral limit, J. Comput. Phys., 330 (2017), 467-492. doi: 10.1016/j.jcp.2016.11.018.

[12]

B. A. de Dios, J. Carrillo and C. -W. Shu, Discontinuous Galerkin methods for the multidimensional Vlasov-Poisson problem, Math. Models Methods Appl. Sci., 22 (2012), 1250042, 45pp. doi: 10.1142/S021820251250042X.

[13]

R. J. DiPerna and P. L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math., 42 (1989), 729-757. doi: 10.1002/cpa.3160420603.

[14]

F. Filbet, Convergence of a finite volume scheme for the Vlasov-Poisson system, SIAM J. Numer. Anal., 39 (2001), 1146-1169. doi: 10.1137/S003614290037321X.

[15]

F. FilbetY. Guo and C.-W. Shu, Analysis of the relativistic Vlasov-Maxwell model in an interval, Quart. Appl. Math., 63 (2005), 691-714. doi: 10.1090/S0033-569X-05-00977-9.

[16]

R. GlasseyS. Pankavich and J. Schaeffer, Separated characteristics and global solvability for the one and one-half dimensional Vlasov-Maxwell system, Kinet. Relat. Models, 9 (2016), 455-467. doi: 10.3934/krm.2016003.

[17]

R. Glassey and J. Schaeffer, On the 'one and one-half' dimensional relativistic Vlasov-Maxwell system, Math. Methods Appl. Sci., 13 (1990), 169-179. doi: 10.1002/mma.1670130207.

[18]

P. HoustonC. Schwab and E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 39 (2002), 2133-2163. doi: 10.1137/S0036142900374111.

[19]

P. HoustonC. Schwab and E. Süli, Stabilized hp-finite element methods for first-order hyperbolic problems, SIAM J. Numer. Anal., 37 (2000), 1618-1643. doi: 10.1137/S0036142998348777.

[20]

T. J. R. Hughes and A. Brooks, A multidimensional upwind scheme with no crosswind diffusion, in Finite element methods for convection dominated flows, ASME Winter Annual Meeting (ed. T. J. R. Hughes), Amer. Soc. Mech. Engrs., 34 (1979), 19–35.

[21]

C. Johnson and J. Saranen, Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations, Math. Comp., 47 (1986), 1-18. doi: 10.1090/S0025-5718-1986-0842120-4.

[22]

J. B. Malmberg and C. Standar, Computational aspects of the streamline diffusion schemes for the one and one-half dimensional Vlasov-Maxwell system, in preparation.

[23]

J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg, 36 (1971), 9-15. doi: 10.1007/BF02995904.

[24]

C. Standar, On streamline diffusion schemes for the one and one-half dimensional relativistic Vlasov-Maxwell system, Calcolo, 53 (2016), 147-169. doi: 10.1007/s10092-015-0141-4.

[25]

S. Sticko and G. Kreiss, A stabilized Nitsche cut element method for the wave equation, Comput. Methods Appl. Mech. Engrg., 309 (2016), 364-387. doi: 10.1016/j.cma.2016.06.001.

[26]

A. Szepessy, Convergence of a streamline diffusion finite element method for scalar conservation laws with boundary conditions, ESAIM: Math. Model. Numer. Anal., 25 (1991), 749-782. doi: 10.1051/m2an/1991250607491.

[27]

S. I. ZakiL. R. T. Gardner and T. J. M. Boyd, A finite element code for the simulation of one-dimensional Vlasov plasmas. I. Theory, J. Comput. Phys., 79 (1988), 184-199. doi: 10.1016/0021-9991(88)90010-1.

show all references

References:
[1]

M. Asadzadeh, Streamline diffusion methods for the Vlasov-Poisson equation, ESAIM: Math. Model. Numer. Anal., 24 (1990), 177-196. doi: 10.1051/m2an/1990240201771.

[2]

M. Asadzadeh and P. Kowalczyk, Convergence analysis of the streamline diffusion and discontinuous Galerkin methods for the Vlasov-Fokker-Planck system, Numer. Methods Partial Differential Equations, 21 (2005), 472-495. doi: 10.1002/num.20044.

[3]

M. Asadzadeh and P. Kowalczyk, Convergence analysis for backward-Euler and mixed discontinuous Galerkin methods for the Vlasov-Poisson system, Adv. Comput. Math., 41 (2015), 833-852. doi: 10.1007/s10444-014-9388-6.

[4]

M. Asadzadeh and A. Sopasakis, Convergence of a hp-streamline diffusion scheme for Vlasov-Fokker-Planck system, Math. Models Methods Appl. Sci., 17 (2007), 1159-1182. doi: 10.1142/S0218202507002236.

[5]

F. Assous and M. Michaeli, Solving Maxwell's equations in singular domains with a Nitsche type method, J. Comput. Phys., 230 (2011), 4922-4939. doi: 10.1016/j.jcp.2011.03.013.

[6]

N. Besse, Convergence of a high-order semi-Lagrangian scheme with propagation of gradients for the one-dimensional Vlasov-Poisson system, SIAM J. Numer. Anal., 46 (2008), 639-670. doi: 10.1137/050635171.

[7]

F. BrezziL. D. Marini and E. Süli, Discontinuous Galerkin methods for first-order hyperbolic problems, Math. Models Methods Appl. Sci., 14 (2004), 1893-1903. doi: 10.1142/S0218202504003866.

[8]

E. Burman and P. Hansbo, Fictitious domain finite element methods using cut elements: Ⅱ. A stabilized Nitsche method, Appl. Numer. Math., 62 (2012), 328-341. doi: 10.1016/j.apnum.2011.01.008.

[9]

F. CharlesB. Després and M. Mehrenberger, Enhanced convergence estimates for semi-Lagrangian schemes: Application to the Vlasov-Poisson equation, SIAM J. Numer. Anal., 51 (2013), 840-863. doi: 10.1137/110851511.

[10]

Y. ChengI. M. GambaF. Li and P. J. Morrison, Discontinuous Galerkin methods for the Vlasov-Maxwell equations, SIAM J. Numer. Anal., 52 (2014), 1017-1049. doi: 10.1137/130915091.

[11]

P. DegondF. Deluzet and D. Doyen, Asymptotic-preserving particle-in-cell methods for the Vlasov-Maxwell system in the quasi-neutral limit, J. Comput. Phys., 330 (2017), 467-492. doi: 10.1016/j.jcp.2016.11.018.

[12]

B. A. de Dios, J. Carrillo and C. -W. Shu, Discontinuous Galerkin methods for the multidimensional Vlasov-Poisson problem, Math. Models Methods Appl. Sci., 22 (2012), 1250042, 45pp. doi: 10.1142/S021820251250042X.

[13]

R. J. DiPerna and P. L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math., 42 (1989), 729-757. doi: 10.1002/cpa.3160420603.

[14]

F. Filbet, Convergence of a finite volume scheme for the Vlasov-Poisson system, SIAM J. Numer. Anal., 39 (2001), 1146-1169. doi: 10.1137/S003614290037321X.

[15]

F. FilbetY. Guo and C.-W. Shu, Analysis of the relativistic Vlasov-Maxwell model in an interval, Quart. Appl. Math., 63 (2005), 691-714. doi: 10.1090/S0033-569X-05-00977-9.

[16]

R. GlasseyS. Pankavich and J. Schaeffer, Separated characteristics and global solvability for the one and one-half dimensional Vlasov-Maxwell system, Kinet. Relat. Models, 9 (2016), 455-467. doi: 10.3934/krm.2016003.

[17]

R. Glassey and J. Schaeffer, On the 'one and one-half' dimensional relativistic Vlasov-Maxwell system, Math. Methods Appl. Sci., 13 (1990), 169-179. doi: 10.1002/mma.1670130207.

[18]

P. HoustonC. Schwab and E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 39 (2002), 2133-2163. doi: 10.1137/S0036142900374111.

[19]

P. HoustonC. Schwab and E. Süli, Stabilized hp-finite element methods for first-order hyperbolic problems, SIAM J. Numer. Anal., 37 (2000), 1618-1643. doi: 10.1137/S0036142998348777.

[20]

T. J. R. Hughes and A. Brooks, A multidimensional upwind scheme with no crosswind diffusion, in Finite element methods for convection dominated flows, ASME Winter Annual Meeting (ed. T. J. R. Hughes), Amer. Soc. Mech. Engrs., 34 (1979), 19–35.

[21]

C. Johnson and J. Saranen, Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations, Math. Comp., 47 (1986), 1-18. doi: 10.1090/S0025-5718-1986-0842120-4.

[22]

J. B. Malmberg and C. Standar, Computational aspects of the streamline diffusion schemes for the one and one-half dimensional Vlasov-Maxwell system, in preparation.

[23]

J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg, 36 (1971), 9-15. doi: 10.1007/BF02995904.

[24]

C. Standar, On streamline diffusion schemes for the one and one-half dimensional relativistic Vlasov-Maxwell system, Calcolo, 53 (2016), 147-169. doi: 10.1007/s10092-015-0141-4.

[25]

S. Sticko and G. Kreiss, A stabilized Nitsche cut element method for the wave equation, Comput. Methods Appl. Mech. Engrg., 309 (2016), 364-387. doi: 10.1016/j.cma.2016.06.001.

[26]

A. Szepessy, Convergence of a streamline diffusion finite element method for scalar conservation laws with boundary conditions, ESAIM: Math. Model. Numer. Anal., 25 (1991), 749-782. doi: 10.1051/m2an/1991250607491.

[27]

S. I. ZakiL. R. T. Gardner and T. J. M. Boyd, A finite element code for the simulation of one-dimensional Vlasov plasmas. I. Theory, J. Comput. Phys., 79 (1988), 184-199. doi: 10.1016/0021-9991(88)90010-1.

Figure 1.  Magnetic ($B$) and electric ($E_1$, $E_2$) energy for case~1 (left) and case 2 (right).
Figure 2.  Kinetic energy for case 1 (left) and case 2 (right).
Table 1.  $L_1$ and $L_2$ errors for different polynomial degrees and fixed mesh sizes set $H_1$
Error Degree $f$ $E_1$ $E_2$ $B$
$L_1$ $p=1$ 3.801e-1 7.086e-4 1.599e-6 1.645e-5
$p=2$ 1.614e-1 3.248e-9 1.770e-7 9.092e-7
$p=3$ 1.891e-2 2.295e-10 9.753e-9 3.321e-8
$L_2$ $p=1$ 7.302e-1 6.204e-7 3.517e-12 4.303e-10
$p=2$ 1.632e-1 1.498e-17 4.113e-14 1.070e-12
$p=3$ 2.833e-3 6.648e-20 1.185e-16 2.186e-15
Error Degree $f$ $E_1$ $E_2$ $B$
$L_1$ $p=1$ 3.801e-1 7.086e-4 1.599e-6 1.645e-5
$p=2$ 1.614e-1 3.248e-9 1.770e-7 9.092e-7
$p=3$ 1.891e-2 2.295e-10 9.753e-9 3.321e-8
$L_2$ $p=1$ 7.302e-1 6.204e-7 3.517e-12 4.303e-10
$p=2$ 1.632e-1 1.498e-17 4.113e-14 1.070e-12
$p=3$ 2.833e-3 6.648e-20 1.185e-16 2.186e-15
Table 2.  $L_1$ and $L_2$ errors for different mesh sizes and fixed polynomial degree $p = 1$
Error Degree $f$ $E_1$ $E_2$ $B$
$L_1$ $H_1$ 3.801e-1 7.086e-4 1.599e-6 1.645e-5
$H_2$ 1.629e-1 8.304e-10 1.791e-7 8.387e-6
$H_3$ 4.324e-2 2.016e-10 4.750e-8 2.099e-6
$L_2$ $H_1$ 7.302e-1 6.204e-7 3.517e-12 4.303e-10
$H_2$ 1.939e-1 8.520e-19 3.956e-14 9.298e-11
$H_3$ 1.444e-2 5.014e-20 2.784e-15 5.850e-12
Error Degree $f$ $E_1$ $E_2$ $B$
$L_1$ $H_1$ 3.801e-1 7.086e-4 1.599e-6 1.645e-5
$H_2$ 1.629e-1 8.304e-10 1.791e-7 8.387e-6
$H_3$ 4.324e-2 2.016e-10 4.750e-8 2.099e-6
$L_2$ $H_1$ 7.302e-1 6.204e-7 3.517e-12 4.303e-10
$H_2$ 1.939e-1 8.520e-19 3.956e-14 9.298e-11
$H_3$ 1.444e-2 5.014e-20 2.784e-15 5.850e-12
[1]

Sergiu Klainerman, Gigliola Staffilani. A new approach to study the Vlasov-Maxwell system. Communications on Pure & Applied Analysis, 2002, 1 (1) : 103-125. doi: 10.3934/cpaa.2002.1.103

[2]

Toan T. Nguyen, Truyen V. Nguyen, Walter A. Strauss. Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinetic & Related Models, 2015, 8 (1) : 153-168. doi: 10.3934/krm.2015.8.153

[3]

Toan T. Nguyen, Truyen V. Nguyen, Walter A. Strauss. Erratum to: Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinetic & Related Models, 2015, 8 (3) : 615-616. doi: 10.3934/krm.2015.8.615

[4]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic & Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

[5]

Yoshifumi Aimoto, Takayasu Matsuo, Yuto Miyatake. A local discontinuous Galerkin method based on variational structure. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 817-832. doi: 10.3934/dcdss.2015.8.817

[6]

Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic & Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139

[7]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216

[8]

Yemin Chen. Smoothness of classical solutions to the Vlasov-Maxwell-Landau system near Maxwellians. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 889-910. doi: 10.3934/dcds.2008.20.889

[9]

Shuangqian Liu, Qinghua Xiao. The relativistic Vlasov-Maxwell-Boltzmann system for short range interaction. Kinetic & Related Models, 2016, 9 (3) : 515-550. doi: 10.3934/krm.2016005

[10]

Andreas C. Aristotelous, Ohannes Karakashian, Steven M. Wise. A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2211-2238. doi: 10.3934/dcdsb.2013.18.2211

[11]

Kim S. Bey, Peter Z. Daffer, Hideaki Kaneko, Puntip Toghaw. Error analysis of the p-version discontinuous Galerkin method for heat transfer in built-up structures. Communications on Pure & Applied Analysis, 2007, 6 (3) : 719-740. doi: 10.3934/cpaa.2007.6.719

[12]

Xia Ji, Wei Cai. Accurate simulations of 2-D phase shift masks with a generalized discontinuous Galerkin (GDG) method. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 401-415. doi: 10.3934/dcdsb.2011.15.401

[13]

Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489

[14]

Mahboub Baccouch. Superconvergence of the semi-discrete local discontinuous Galerkin method for nonlinear KdV-type problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 19-54. doi: 10.3934/dcdsb.2018104

[15]

E. Fossas, J. M. Olm. Galerkin method and approximate tracking in a non-minimum phase bilinear system. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 53-76. doi: 10.3934/dcdsb.2007.7.53

[16]

Renjun Duan, Shuangqian Liu, Tong Yang, Huijiang Zhao. Stability of the nonrelativistic Vlasov-Maxwell-Boltzmann system for angular non-cutoff potentials. Kinetic & Related Models, 2013, 6 (1) : 159-204. doi: 10.3934/krm.2013.6.159

[17]

Robert Glassey, Stephen Pankavich, Jack Schaeffer. Separated characteristics and global solvability for the one and one-half dimensional Vlasov Maxwell system. Kinetic & Related Models, 2016, 9 (3) : 455-467. doi: 10.3934/krm.2016003

[18]

Stephen Pankavich, Nicholas Michalowski. Global classical solutions for the "One and one-half'' dimensional relativistic Vlasov-Maxwell-Fokker-Planck system. Kinetic & Related Models, 2015, 8 (1) : 169-199. doi: 10.3934/krm.2015.8.169

[19]

Mihai Bostan, Thierry Goudon. Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system; the one and one half dimensional case. Kinetic & Related Models, 2008, 1 (1) : 139-170. doi: 10.3934/krm.2008.1.139

[20]

Francis Filbet, Roland Duclous, Bruno Dubroca. Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 283-305. doi: 10.3934/dcdss.2012.5.283

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (30)
  • HTML views (143)
  • Cited by (0)

[Back to Top]