February 2019, 12(1): 1-36. doi: 10.3934/krm.2019001

Stable manifolds for a class of singular evolution equations and exponential decay of kinetic shocks

1. 

Miami University, Department of Mathematics, 301 S. Patterson Ave., Oxford, OH 45056, USA

2. 

Indiana University, Department of Mathematics, 831 E. Third St., Bloomington, IN 47405, USA

* Corresponding author: Kevin Zumbrun

Received  May 2017 Published  July 2018

Fund Project: Research of A. P. was partially supported under the Summer Research Grant program, Miami University and by the Simons Foundation. Research of K.Z. was partially supported under NSF grant no. DMS-0300487

We construct stable manifolds for a class of singular evolution equations including the steady Boltzmann equation, establishing in the process exponential decay of associated kinetic shock and boundary layers to their limiting equilibrium states. Our analysis is from a classical dynamical systems point of view, but with a number of interesting modifications to accomodate ill-posedness with respect to the Cauchy problem of the underlying evolution equation.

Citation: Alin Pogan, Kevin Zumbrun. Stable manifolds for a class of singular evolution equations and exponential decay of kinetic shocks. Kinetic & Related Models, 2019, 12 (1) : 1-36. doi: 10.3934/krm.2019001
References:
[1]

A. Abbondandolo and P. Majer, Ordinary differential operators in Hilbert spaces and Fredholm pairs, Math. Z., 243 (2003), 525-562. doi: 10.1007/s00209-002-0473-z.

[2]

A. Abbondandolo and P. Majer, Morse homology on Hilbert spaces, Comm. Pure Appl. Math., 54 (2001), 689-760. doi: 10.1002/cpa.1012.

[3]

H. BartI. Gohberg and M. A. Kaashoek, Wiener-Hopf factorization, inverse Fourier transforms and exponentially dichotomous operators, J. Funct. Anal., 68 (1986), 1-42. doi: 10.1016/0022-1236(86)90055-8.

[4]

G. Boillat and T. Ruggeri, On the shock structure problem for hyperbolic system of balance laws and convex entropy, Continuum Mechanics and Thermodynamics, 10 (1998), 285-292. doi: 10.1007/s001610050094.

[5]

R. Caflisch and B. Nicolaenko, Shock profile solutions of the Boltzmann equation, Comm. Math. Phys., 86 (1982), 161-194. doi: 10.1007/BF01206009.

[6]

C. Cercignani, The Boltzmann Equation and Its Applications, Applied Mathematical Sciences, 67. Springer-Verlag, New York, 1988. ⅹⅱ+455 pp. ISBN: 0-387-96637-4. doi: 10.1007/978-1-4612-1039-9.

[7]

G. Q. ChenC. David Levermore and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math., 47 (1994), 787-830. doi: 10.1002/cpa.3160470602.

[8]

A. Dressler and W.-A. Yong, Existence of traveling-wave solutions for hyperbolic systems of balance laws, Arch. Rational Mech. Anal., 182 (2006), 49-75. doi: 10.1007/s00205-006-0430-9.

[9]

R. A. Gardner and K. Zumbrun, The gap lemma and geometric criteria for instability of viscous shock profiles, Comm. Pure Appl. Math., 51 (1998), 797-855. doi: 10.1002/(SICI)1097-0312(199807)51:7<797::AID-CPA3>3.0.CO;2-1.

[10]

H. Grad, Asymptotic theory of the Boltzmann equation. Ⅱ, 1963 Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l'UNESCO, Paris, 1962), Academic Press, New York, 1 (1963), 26-59.

[11]

J. Härterich, Viscous profiles for traveling waves of scalar balance laws: The canard case, Methods and Applications of Analysis, 10 (2003), 97-117. doi: 10.4310/MAA.2003.v10.n1.a6.

[12]

C. LattanzioC. MasciaT. NguyenR. Plaza and K. Zumbrun, Stability of scalar radiative shock profiles, SIAM J. Math. Anal., 41 (2009/10), 2165-2206. doi: 10.1137/09076026X.

[13]

Y. LatushkinA. Pogan and R. Schnaubelt, Dichotomy and Fredholm properties of evolution equations, J. Operator Theory, 58 (2007), 387-414.

[14]

Y. Latushkin and A. Pogan, The dichotomy theorem for evolution bi-families, J. Diff. Eq., 245 (2008), 2267-2306. doi: 10.1016/j.jde.2008.01.023.

[15]

Y. Latushkin and A. Pogan, The infinite dimensional evans function, J. Funct Anal., 268 (2015), 1509-1586. doi: 10.1016/j.jfa.2014.11.020.

[16]

T. P. Liu and S. H. Yu, Boltzmann equation: Micro-macro decompositions and positivity of shock profiles, Comm. Math. Phys., 246 (2004), 133-179. doi: 10.1007/s00220-003-1030-2.

[17]

T. P. Liu and S. H. Yu, Invariant manifolds for steady Boltzmann flows and applications, Arch. Rational Mech. Anal., 209 (2013), 869-997. doi: 10.1007/s00205-013-0640-x.

[18]

J. Mallet-Paret, The Fredholm alternative for functional-differential equations of mixed type, J. Dyn. Diff. Eq., 11 (1999), 1-47. doi: 10.1023/A:1021889401235.

[19]

C. Mascia and K. Zumbrun, Pointwise Green's function bounds and stability of relaxation shocks, Indiana Univ. Math. J., 51 (2002), 773-904. doi: 10.1512/iumj.2002.51.2212.

[20]

C. Mascia and K. Zumbrun, Spectral stability of weak relaxation shock profiles, Comm. Part. Diff. Eq., 34 (2009), 119-136. doi: 10.1080/03605300802553971.

[21]

C. Mascia and K. Zumbrun, Stability of large-amplitude shock profiles of general relaxation systems, SIAM J. Math. Anal., 37 (2005), 889-913. doi: 10.1137/S0036141004435844.

[22]

C. Mascia and K. Zumbrun, Pointwise Green's function bounds for shock profiles with degenerate viscosity, Arch. Ration. Mech. Anal., 169 (2003), 177-263. doi: 10.1007/s00205-003-0258-5.

[23]

C. Mascia and K. Zumbrun, Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic systems, Arch. Rat. Mech. Anal., 172 (2004), 93-131. doi: 10.1007/s00205-003-0293-2.

[24]

G. MétivierT. Texier and K. Zumbrun, Existence of quasilinear relaxation shock profiles in systems with characteristic velocities, Ann. Fac. Sci. Toulouse Math., 21 (2012), 1-23. doi: 10.5802/afst.1327.

[25]

G. Métivier and K. Zumbrun, Existence of semilinear relaxation shocks, J. Math. Pures Appl., 92 (2009), 209-231. doi: 10.1016/j.matpur.2009.05.002.

[26]

G. Métivier and K. Zumbrun, Existence and sharp localization in velocity of small-amplitude Boltzmann shocks, Kinet. Relat. Models, 2 (2009), 667-705. doi: 10.3934/krm.2009.2.667.

[27]

F. Nazarov, private communication.

[28]

T. NguyenR. Plaza and K. Zumbrun, Stability of radiative shock profiles for hyperbolic-elliptic coupled systems, Phys. D, 239 (2010), 428-453. doi: 10.1016/j.physd.2010.01.011.

[29]

D. PeterhofB. Sandstede and A. Scheel, Exponential dichotomies for solitary-wave solutions of semilinear elliptic equations on infinite cylinders, J. Diff. Eq., 140 (1997), 266-308. doi: 10.1006/jdeq.1997.3303.

[30]

A. Pogan and A. Scheel, Instability of spikes in the presence of conservation laws, Z. Angew. Math. Phys., 61 (2010), 979-998. doi: 10.1007/s00033-010-0058-3.

[31]

A. Pogan and A. Scheel, Layers in the presence of conservation laws, J. Dyn. Diff. Eq., 24 (2012), 249-287. doi: 10.1007/s10884-012-9248-3.

[32]

A. Pogan and K. Zumbrun, Center manifolds of degenerate evolution equations and existence of small-amplitude kinetic shocks, J. Diff Eq., 264 (2018), 6752-6808. doi: 10.1016/j.jde.2018.01.049.

[33]

J. Robbin and D. Salamon, The spectral flow and the Maslov index, Bull. London Math. Soc., 27 (1995), 1-33. doi: 10.1112/blms/27.1.1.

[34]

B. Sandstede, Stability of traveling waves, in: Handbook of Dynamical Systems, vol. 2, NorthHolland, Amsterdam, 2002, 983-1055. doi: 10.1016/S1874-575X(02)80039-X.

[35]

B. Sandstede and A. Scheel, On the structure of spectra of modulated traveling waves, Math. Nachr., 232 (2001), 39-93. doi: 10.1002/1522-2616(200112)232:1<39::AID-MANA39>3.0.CO;2-5.

[36]

B. Sandstede and A. Scheel, Relative Morse indices, Fredholm indices, and group velocitie, Discrete Contin. Dyn. Syst. A, 20 (2008), 139-158.

[37]

B. Texier and K. Zumbrun, Nash-Moser iteration and singular perturbations, Ann. Inst. H. Poincare Anal. Non Lineaire, 28 (2011), 499-527. doi: 10.1016/j.anihpc.2011.05.001.

[38]

K. Zumbrun, Multidimensional stability of planar viscous shock waves, Advances in the Theory of Shock Waves, Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 47 (2001), 307-516.

[39]

K. Zumbrun, Stability of large-amplitude shock waves of compressible Navier-Stokes equations, With an Appendix by Helge Kristian Jenssen and Gregory Lyng, in Handbook of Mathematical Fluid Dynamics, North-Holland, Amsterdam, 3 (2004), 311-533.

[40]

K. Zumbrun, Planar stability criteria for viscous shock waves of systems with real viscosity, Hyperbolic Systems of Balance Laws, 229-326, Lecture Notes in Math., 1911, Springer, Berlin, 2007. doi: 10.1007/978-3-540-72187-1_4.

[41]

K. Zumbrun, Stability and dynamics of viscous shock waves, Nonlinear Conservation Laws and Applications, 123-167, IMA Vol. Math. Appl., 153, Springer, New York, 2011. doi: 10.1007/978-1-4419-9554-4_5.

[42]

K. Zumbrun, L resolvent estimates for steady Boltzmann's equation, Kinet. Relat. Models, 10 (2017), 1255-1257. doi: 10.3934/krm.2017048.

[43]

K. Zumbrun, Conditional stability of unstable viscous shocks, J. Diff. Eq., 247 (2009), 648-671. doi: 10.1016/j.jde.2009.02.017.

[44]

K. Zumbrun and P. Howard, Pointwise semigroup methods and stability of viscous shock waves, Indiana Univ. Math. J., 47 (1998), 741-871; Errata, Indiana Univ. Math. J., 51 (2002), 1017-1021 doi: 10.1512/iumj.2002.51.2410.

[45]

K. Zumbrun and D. Serre, Viscous and inviscid stability of multidimensional planar shock fronts, Indiana Univ. Math. J., 48 (1999), 937-992. doi: 10.1512/iumj.1999.48.1765.

show all references

References:
[1]

A. Abbondandolo and P. Majer, Ordinary differential operators in Hilbert spaces and Fredholm pairs, Math. Z., 243 (2003), 525-562. doi: 10.1007/s00209-002-0473-z.

[2]

A. Abbondandolo and P. Majer, Morse homology on Hilbert spaces, Comm. Pure Appl. Math., 54 (2001), 689-760. doi: 10.1002/cpa.1012.

[3]

H. BartI. Gohberg and M. A. Kaashoek, Wiener-Hopf factorization, inverse Fourier transforms and exponentially dichotomous operators, J. Funct. Anal., 68 (1986), 1-42. doi: 10.1016/0022-1236(86)90055-8.

[4]

G. Boillat and T. Ruggeri, On the shock structure problem for hyperbolic system of balance laws and convex entropy, Continuum Mechanics and Thermodynamics, 10 (1998), 285-292. doi: 10.1007/s001610050094.

[5]

R. Caflisch and B. Nicolaenko, Shock profile solutions of the Boltzmann equation, Comm. Math. Phys., 86 (1982), 161-194. doi: 10.1007/BF01206009.

[6]

C. Cercignani, The Boltzmann Equation and Its Applications, Applied Mathematical Sciences, 67. Springer-Verlag, New York, 1988. ⅹⅱ+455 pp. ISBN: 0-387-96637-4. doi: 10.1007/978-1-4612-1039-9.

[7]

G. Q. ChenC. David Levermore and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math., 47 (1994), 787-830. doi: 10.1002/cpa.3160470602.

[8]

A. Dressler and W.-A. Yong, Existence of traveling-wave solutions for hyperbolic systems of balance laws, Arch. Rational Mech. Anal., 182 (2006), 49-75. doi: 10.1007/s00205-006-0430-9.

[9]

R. A. Gardner and K. Zumbrun, The gap lemma and geometric criteria for instability of viscous shock profiles, Comm. Pure Appl. Math., 51 (1998), 797-855. doi: 10.1002/(SICI)1097-0312(199807)51:7<797::AID-CPA3>3.0.CO;2-1.

[10]

H. Grad, Asymptotic theory of the Boltzmann equation. Ⅱ, 1963 Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l'UNESCO, Paris, 1962), Academic Press, New York, 1 (1963), 26-59.

[11]

J. Härterich, Viscous profiles for traveling waves of scalar balance laws: The canard case, Methods and Applications of Analysis, 10 (2003), 97-117. doi: 10.4310/MAA.2003.v10.n1.a6.

[12]

C. LattanzioC. MasciaT. NguyenR. Plaza and K. Zumbrun, Stability of scalar radiative shock profiles, SIAM J. Math. Anal., 41 (2009/10), 2165-2206. doi: 10.1137/09076026X.

[13]

Y. LatushkinA. Pogan and R. Schnaubelt, Dichotomy and Fredholm properties of evolution equations, J. Operator Theory, 58 (2007), 387-414.

[14]

Y. Latushkin and A. Pogan, The dichotomy theorem for evolution bi-families, J. Diff. Eq., 245 (2008), 2267-2306. doi: 10.1016/j.jde.2008.01.023.

[15]

Y. Latushkin and A. Pogan, The infinite dimensional evans function, J. Funct Anal., 268 (2015), 1509-1586. doi: 10.1016/j.jfa.2014.11.020.

[16]

T. P. Liu and S. H. Yu, Boltzmann equation: Micro-macro decompositions and positivity of shock profiles, Comm. Math. Phys., 246 (2004), 133-179. doi: 10.1007/s00220-003-1030-2.

[17]

T. P. Liu and S. H. Yu, Invariant manifolds for steady Boltzmann flows and applications, Arch. Rational Mech. Anal., 209 (2013), 869-997. doi: 10.1007/s00205-013-0640-x.

[18]

J. Mallet-Paret, The Fredholm alternative for functional-differential equations of mixed type, J. Dyn. Diff. Eq., 11 (1999), 1-47. doi: 10.1023/A:1021889401235.

[19]

C. Mascia and K. Zumbrun, Pointwise Green's function bounds and stability of relaxation shocks, Indiana Univ. Math. J., 51 (2002), 773-904. doi: 10.1512/iumj.2002.51.2212.

[20]

C. Mascia and K. Zumbrun, Spectral stability of weak relaxation shock profiles, Comm. Part. Diff. Eq., 34 (2009), 119-136. doi: 10.1080/03605300802553971.

[21]

C. Mascia and K. Zumbrun, Stability of large-amplitude shock profiles of general relaxation systems, SIAM J. Math. Anal., 37 (2005), 889-913. doi: 10.1137/S0036141004435844.

[22]

C. Mascia and K. Zumbrun, Pointwise Green's function bounds for shock profiles with degenerate viscosity, Arch. Ration. Mech. Anal., 169 (2003), 177-263. doi: 10.1007/s00205-003-0258-5.

[23]

C. Mascia and K. Zumbrun, Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic systems, Arch. Rat. Mech. Anal., 172 (2004), 93-131. doi: 10.1007/s00205-003-0293-2.

[24]

G. MétivierT. Texier and K. Zumbrun, Existence of quasilinear relaxation shock profiles in systems with characteristic velocities, Ann. Fac. Sci. Toulouse Math., 21 (2012), 1-23. doi: 10.5802/afst.1327.

[25]

G. Métivier and K. Zumbrun, Existence of semilinear relaxation shocks, J. Math. Pures Appl., 92 (2009), 209-231. doi: 10.1016/j.matpur.2009.05.002.

[26]

G. Métivier and K. Zumbrun, Existence and sharp localization in velocity of small-amplitude Boltzmann shocks, Kinet. Relat. Models, 2 (2009), 667-705. doi: 10.3934/krm.2009.2.667.

[27]

F. Nazarov, private communication.

[28]

T. NguyenR. Plaza and K. Zumbrun, Stability of radiative shock profiles for hyperbolic-elliptic coupled systems, Phys. D, 239 (2010), 428-453. doi: 10.1016/j.physd.2010.01.011.

[29]

D. PeterhofB. Sandstede and A. Scheel, Exponential dichotomies for solitary-wave solutions of semilinear elliptic equations on infinite cylinders, J. Diff. Eq., 140 (1997), 266-308. doi: 10.1006/jdeq.1997.3303.

[30]

A. Pogan and A. Scheel, Instability of spikes in the presence of conservation laws, Z. Angew. Math. Phys., 61 (2010), 979-998. doi: 10.1007/s00033-010-0058-3.

[31]

A. Pogan and A. Scheel, Layers in the presence of conservation laws, J. Dyn. Diff. Eq., 24 (2012), 249-287. doi: 10.1007/s10884-012-9248-3.

[32]

A. Pogan and K. Zumbrun, Center manifolds of degenerate evolution equations and existence of small-amplitude kinetic shocks, J. Diff Eq., 264 (2018), 6752-6808. doi: 10.1016/j.jde.2018.01.049.

[33]

J. Robbin and D. Salamon, The spectral flow and the Maslov index, Bull. London Math. Soc., 27 (1995), 1-33. doi: 10.1112/blms/27.1.1.

[34]

B. Sandstede, Stability of traveling waves, in: Handbook of Dynamical Systems, vol. 2, NorthHolland, Amsterdam, 2002, 983-1055. doi: 10.1016/S1874-575X(02)80039-X.

[35]

B. Sandstede and A. Scheel, On the structure of spectra of modulated traveling waves, Math. Nachr., 232 (2001), 39-93. doi: 10.1002/1522-2616(200112)232:1<39::AID-MANA39>3.0.CO;2-5.

[36]

B. Sandstede and A. Scheel, Relative Morse indices, Fredholm indices, and group velocitie, Discrete Contin. Dyn. Syst. A, 20 (2008), 139-158.

[37]

B. Texier and K. Zumbrun, Nash-Moser iteration and singular perturbations, Ann. Inst. H. Poincare Anal. Non Lineaire, 28 (2011), 499-527. doi: 10.1016/j.anihpc.2011.05.001.

[38]

K. Zumbrun, Multidimensional stability of planar viscous shock waves, Advances in the Theory of Shock Waves, Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 47 (2001), 307-516.

[39]

K. Zumbrun, Stability of large-amplitude shock waves of compressible Navier-Stokes equations, With an Appendix by Helge Kristian Jenssen and Gregory Lyng, in Handbook of Mathematical Fluid Dynamics, North-Holland, Amsterdam, 3 (2004), 311-533.

[40]

K. Zumbrun, Planar stability criteria for viscous shock waves of systems with real viscosity, Hyperbolic Systems of Balance Laws, 229-326, Lecture Notes in Math., 1911, Springer, Berlin, 2007. doi: 10.1007/978-3-540-72187-1_4.

[41]

K. Zumbrun, Stability and dynamics of viscous shock waves, Nonlinear Conservation Laws and Applications, 123-167, IMA Vol. Math. Appl., 153, Springer, New York, 2011. doi: 10.1007/978-1-4419-9554-4_5.

[42]

K. Zumbrun, L resolvent estimates for steady Boltzmann's equation, Kinet. Relat. Models, 10 (2017), 1255-1257. doi: 10.3934/krm.2017048.

[43]

K. Zumbrun, Conditional stability of unstable viscous shocks, J. Diff. Eq., 247 (2009), 648-671. doi: 10.1016/j.jde.2009.02.017.

[44]

K. Zumbrun and P. Howard, Pointwise semigroup methods and stability of viscous shock waves, Indiana Univ. Math. J., 47 (1998), 741-871; Errata, Indiana Univ. Math. J., 51 (2002), 1017-1021 doi: 10.1512/iumj.2002.51.2410.

[45]

K. Zumbrun and D. Serre, Viscous and inviscid stability of multidimensional planar shock fronts, Indiana Univ. Math. J., 48 (1999), 937-992. doi: 10.1512/iumj.1999.48.1765.

[1]

A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 35-57. doi: 10.3934/dcds.2009.24.35

[2]

Tai-Ping Liu, Shih-Hsien Yu. Boltzmann equation, boundary effects. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 145-157. doi: 10.3934/dcds.2009.24.145

[3]

Leif Arkeryd, Anne Nouri. On a Boltzmann equation for Haldane statistics. Kinetic & Related Models, 2019, 12 (2) : 323-346. doi: 10.3934/krm.2019014

[4]

Claude Bardos, François Golse, Ivan Moyano. Linear Boltzmann equation and fractional diffusion. Kinetic & Related Models, 2018, 11 (4) : 1011-1036. doi: 10.3934/krm.2018039

[5]

Yan Guo, Juhi Jang, Ning Jiang. Local Hilbert expansion for the Boltzmann equation. Kinetic & Related Models, 2009, 2 (1) : 205-214. doi: 10.3934/krm.2009.2.205

[6]

Raffaele Esposito, Yan Guo, Rossana Marra. Validity of the Boltzmann equation with an external force. Kinetic & Related Models, 2011, 4 (2) : 499-515. doi: 10.3934/krm.2011.4.499

[7]

El Miloud Zaoui, Marc Laforest. Stability and modeling error for the Boltzmann equation. Kinetic & Related Models, 2014, 7 (2) : 401-414. doi: 10.3934/krm.2014.7.401

[8]

Alexander Bobylev, Åsa Windfäll. Boltzmann equation and hydrodynamics at the Burnett level. Kinetic & Related Models, 2012, 5 (2) : 237-260. doi: 10.3934/krm.2012.5.237

[9]

Radjesvarane Alexandre. A review of Boltzmann equation with singular kernels. Kinetic & Related Models, 2009, 2 (4) : 551-646. doi: 10.3934/krm.2009.2.551

[10]

Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations & Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007

[11]

Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108

[12]

Aurore Back, Emmanuel Frénod. Geometric two-scale convergence on manifold and applications to the Vlasov equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 223-241. doi: 10.3934/dcdss.2015.8.223

[13]

Seiji Ukai. Time-periodic solutions of the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 579-596. doi: 10.3934/dcds.2006.14.579

[14]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Exponential stability of the solutions to the Boltzmann equation for the Benard problem. Kinetic & Related Models, 2012, 5 (4) : 673-695. doi: 10.3934/krm.2012.5.673

[15]

François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221

[16]

Kevin Zumbrun. L resolvent bounds for steady Boltzmann's Equation. Kinetic & Related Models, 2017, 10 (4) : 1255-1257. doi: 10.3934/krm.2017048

[17]

Nicolas Fournier. A new regularization possibility for the Boltzmann equation with soft potentials. Kinetic & Related Models, 2008, 1 (3) : 405-414. doi: 10.3934/krm.2008.1.405

[18]

Marco A. Fontelos, Lucía B. Gamboa. On the structure of double layers in Poisson-Boltzmann equation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1939-1967. doi: 10.3934/dcdsb.2012.17.1939

[19]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Bounded solutions of the Boltzmann equation in the whole space. Kinetic & Related Models, 2011, 4 (1) : 17-40. doi: 10.3934/krm.2011.4.17

[20]

Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (91)
  • HTML views (193)
  • Cited by (0)

Other articles
by authors

[Back to Top]