December 2018, 11(6): 1277-1299. doi: 10.3934/krm.2018050

Lagrangian solutions to the Vlasov-Poisson system with a point charge

1. 

Departement Mathematik und Informatik, Universität Basel, Spiegelgasse 1, CH-4051 Basel, Switzerland

2. 

Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

* Corresponding author: Chiara Saffirio

Received  May 2017 Revised  November 2017 Published  June 2018

We consider the Cauchy problem for the repulsive Vlasov-Poisson system in the three dimensional space, where the initial datum is the sum of a diffuse density, assumed to be bounded and integrable, and a point charge. Under some decay assumptions for the diffuse density close to the point charge, under bounds on the total energy, and assuming that the initial total diffuse charge is strictly less than one, we prove existence of global Lagrangian solutions. Our result extends the Eulerian theory of [17], proving that solutions are transported by the flow trajectories. The proof is based on the ODE theory developed in [8] in the setting of vector fields with anisotropic regularity, where some components of the gradient of the vector field is a singular integral of a measure.

Citation: Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic & Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050
References:
[1]

L. Ambrosio, Transport equation and Cauchy problem for BV vector fields, Invent. Math., 158 (2004), 227-260. doi: 10.1007/s00222-004-0367-2.

[2]

L. AmbrosioM. Colombo and A. Figalli, Existence and uniqueness of maximal regular flows for non-smooth vector fields, Arch. Rational Mech. Anal., 218 (2015), 1043-1081. doi: 10.1007/s00205-015-0875-9.

[3]

L. AmbrosioM. Colombo and A. Figalli, On the Lagrangian structure of transport equations: The Vlasov-Poisson system, Duke Math. J., 166 (2017), 3505-3568. doi: 10.1215/00127094-2017-0032.

[4]

L. Ambrosio and G. Crippa, Continuity equations and ODE flows with non-smooth velocity, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 144 (2014), 1191-1244. doi: 10.1017/S0308210513000085.

[5]

A. A. Arsenev, Global existence of a weak solution of Vlasov's system of equations, U. S. S. R. Comput. Math. Math. Phys., 15 (1975), 136-147,276.

[6]

C. Bardos and P. Degond, Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 101-118. doi: 10.1016/S0294-1449(16)30405-X.

[7]

A. BohunF. Bouchut and G. Crippa, Lagrangian solutions to the Vlasov-Poisson system with $L^1$ density, J. Differential Equations, 260 (2016), 3576-3597. doi: 10.1016/j.jde.2015.10.041.

[8]

A. BohunF. Bouchut and G. Crippa, Lagrangian flows for vector fields with anisotropic regularity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1409-1429. doi: 10.1016/j.anihpc.2015.05.005.

[9]

A. BohunF. Bouchut and G. Crippa, Lagrangian solutions to the 2D Euler system with $L^1$ vorticity and infinite energy, Nonlinear Analysis: Theory, Methods & Applications, 132 (2016), 160-172. doi: 10.1016/j.na.2015.11.004.

[10]

F. Bouchut and G. Crippa, Lagrangian flows for vector fields with gradient given by a singular integral, J. Hyper. Differential Equations, 10 (2013), 235-282. doi: 10.1142/S0219891613500100.

[11]

S. Caprino and C. Marchioro, On the plasma-charge model, Kinet. Relat. Models, 3 (2010), 241-254. doi: 10.3934/krm.2010.3.241.

[12]

S. CaprinoC. MarchioroE. Miot and M. Pulvirenti, On the 2D attractive plasma-charge model, Comm. Partial Differential Equations, 37 (2012), 1237-1272. doi: 10.1080/03605302.2011.653032.

[13]

F. Castella, Propagation of space moments in the Vlasov-Poisson Equation and further results, Ann. Inst. Henri Poincaré, 16 (1999), 503-533. doi: 10.1016/S0294-1449(99)80026-2.

[14]

Z. Chen and X. Zhang, Sub-linear estimate of large velocity in a collisionless plasma, Commun. Math. Sciences, 12 (2014), 279-291. doi: 10.4310/CMS.2014.v12.n2.a4.

[15]

G. Crippa and C. De Lellis, Estimates and regularity results for the DiPerna-Lions flow, J. Reine Angew. Math., 616 (2008), 15-46. doi: 10.1515/CRELLE.2008.016.

[16]

G. CrippaM. C. Lopes FilhoE. Miot and H. J. Nussenzveig Lopes, Flows of vector fields with point singularities and the vortex-wave system, Discrete Contin. Dyn. Syst., 36 (2016), 2405-2417. doi: 10.3934/dcds.2016.36.2405.

[17]

L. DesvillettesE. Miot and C. Saffirio, Polynomial propagation of moments and global existence for a Vlasov-Poisson system with a point charge, Ann. Inst. H. Poincaré (C) Anal. Non Linéaire, 32 (2015), 373-400. doi: 10.1016/j.anihpc.2014.01.001.

[18]

R. J. Di Perna and P.-L. Lions, Ordinary differential equations, transport equations and Sobolev spaces, Invent. Math., 98 (1989), 511-547. doi: 10.1007/BF01393835.

[19]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998.

[20]

L. Grafakos, Classical Fourier analysis, Graduate Texts in Mathematics, 249, Third Edition, Springer, New York, 2014. doi: 10.1007/978-1-4939-1194-3.

[21]

T. Holding and E. Miot, Uniqueness and stability for the Vlasov-Poisson system with spatial density in Orlicz spaces, accepted for publication in Commun. Contemp. Math., arXiv: 1703.03046v1.

[22]

S. V. Iordanskii, The Cauchy problem for the kinetic equation of plasma, Trudy Mat. Inst. Steklov., 60 (1961), 181-194.

[23]

P.-L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., 105 (1991), 415-430. doi: 10.1007/BF01232273.

[24]

G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density, J. Math. Pures Appl., 86 (2006), 68-79. doi: 10.1016/j.matpur.2006.01.005.

[25]

C. MarchioroE. Miot and M. Pulvirenti, The Cauchy problem for the $3-D$ Vlasov-Poisson system with point charges, Arch. Ration. Mech. Anal., 201 (2011), 1-26. doi: 10.1007/s00205-010-0388-5.

[26]

E. Miot, A uniqueness criterion for unbounded solutions to the Vlasov-Poisson system, Commun. Math. Phys., 345 (2016), 469-482. doi: 10.1007/s00220-016-2707-7.

[27]

S. Okabe and T. Ukai, On classical solutions in the large in time of the two-dimensional Vlasov equation, Osaka J. Math., 15 (1978), 245-261.

[28]

K. Pfaffelmoser, Global existence of the Vlasov-Poisson system in three dimensions for general initial data, J. Differ. Equ., 95 (1992), 281-303. doi: 10.1016/0022-0396(92)90033-J.

[29]

J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Commun. Partial Differ. Equations, 16 (1991), 1313-1335. doi: 10.1080/03605309108820801.

[30]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.

[31]

S. Wollman, Global in time solution to the three-dimensional Vlasov-Poisson system, J. Math. Anal. Appl., 176 (1996), 76-91. doi: 10.1006/jmaa.1993.1200.

show all references

References:
[1]

L. Ambrosio, Transport equation and Cauchy problem for BV vector fields, Invent. Math., 158 (2004), 227-260. doi: 10.1007/s00222-004-0367-2.

[2]

L. AmbrosioM. Colombo and A. Figalli, Existence and uniqueness of maximal regular flows for non-smooth vector fields, Arch. Rational Mech. Anal., 218 (2015), 1043-1081. doi: 10.1007/s00205-015-0875-9.

[3]

L. AmbrosioM. Colombo and A. Figalli, On the Lagrangian structure of transport equations: The Vlasov-Poisson system, Duke Math. J., 166 (2017), 3505-3568. doi: 10.1215/00127094-2017-0032.

[4]

L. Ambrosio and G. Crippa, Continuity equations and ODE flows with non-smooth velocity, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 144 (2014), 1191-1244. doi: 10.1017/S0308210513000085.

[5]

A. A. Arsenev, Global existence of a weak solution of Vlasov's system of equations, U. S. S. R. Comput. Math. Math. Phys., 15 (1975), 136-147,276.

[6]

C. Bardos and P. Degond, Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 101-118. doi: 10.1016/S0294-1449(16)30405-X.

[7]

A. BohunF. Bouchut and G. Crippa, Lagrangian solutions to the Vlasov-Poisson system with $L^1$ density, J. Differential Equations, 260 (2016), 3576-3597. doi: 10.1016/j.jde.2015.10.041.

[8]

A. BohunF. Bouchut and G. Crippa, Lagrangian flows for vector fields with anisotropic regularity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1409-1429. doi: 10.1016/j.anihpc.2015.05.005.

[9]

A. BohunF. Bouchut and G. Crippa, Lagrangian solutions to the 2D Euler system with $L^1$ vorticity and infinite energy, Nonlinear Analysis: Theory, Methods & Applications, 132 (2016), 160-172. doi: 10.1016/j.na.2015.11.004.

[10]

F. Bouchut and G. Crippa, Lagrangian flows for vector fields with gradient given by a singular integral, J. Hyper. Differential Equations, 10 (2013), 235-282. doi: 10.1142/S0219891613500100.

[11]

S. Caprino and C. Marchioro, On the plasma-charge model, Kinet. Relat. Models, 3 (2010), 241-254. doi: 10.3934/krm.2010.3.241.

[12]

S. CaprinoC. MarchioroE. Miot and M. Pulvirenti, On the 2D attractive plasma-charge model, Comm. Partial Differential Equations, 37 (2012), 1237-1272. doi: 10.1080/03605302.2011.653032.

[13]

F. Castella, Propagation of space moments in the Vlasov-Poisson Equation and further results, Ann. Inst. Henri Poincaré, 16 (1999), 503-533. doi: 10.1016/S0294-1449(99)80026-2.

[14]

Z. Chen and X. Zhang, Sub-linear estimate of large velocity in a collisionless plasma, Commun. Math. Sciences, 12 (2014), 279-291. doi: 10.4310/CMS.2014.v12.n2.a4.

[15]

G. Crippa and C. De Lellis, Estimates and regularity results for the DiPerna-Lions flow, J. Reine Angew. Math., 616 (2008), 15-46. doi: 10.1515/CRELLE.2008.016.

[16]

G. CrippaM. C. Lopes FilhoE. Miot and H. J. Nussenzveig Lopes, Flows of vector fields with point singularities and the vortex-wave system, Discrete Contin. Dyn. Syst., 36 (2016), 2405-2417. doi: 10.3934/dcds.2016.36.2405.

[17]

L. DesvillettesE. Miot and C. Saffirio, Polynomial propagation of moments and global existence for a Vlasov-Poisson system with a point charge, Ann. Inst. H. Poincaré (C) Anal. Non Linéaire, 32 (2015), 373-400. doi: 10.1016/j.anihpc.2014.01.001.

[18]

R. J. Di Perna and P.-L. Lions, Ordinary differential equations, transport equations and Sobolev spaces, Invent. Math., 98 (1989), 511-547. doi: 10.1007/BF01393835.

[19]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998.

[20]

L. Grafakos, Classical Fourier analysis, Graduate Texts in Mathematics, 249, Third Edition, Springer, New York, 2014. doi: 10.1007/978-1-4939-1194-3.

[21]

T. Holding and E. Miot, Uniqueness and stability for the Vlasov-Poisson system with spatial density in Orlicz spaces, accepted for publication in Commun. Contemp. Math., arXiv: 1703.03046v1.

[22]

S. V. Iordanskii, The Cauchy problem for the kinetic equation of plasma, Trudy Mat. Inst. Steklov., 60 (1961), 181-194.

[23]

P.-L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., 105 (1991), 415-430. doi: 10.1007/BF01232273.

[24]

G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density, J. Math. Pures Appl., 86 (2006), 68-79. doi: 10.1016/j.matpur.2006.01.005.

[25]

C. MarchioroE. Miot and M. Pulvirenti, The Cauchy problem for the $3-D$ Vlasov-Poisson system with point charges, Arch. Ration. Mech. Anal., 201 (2011), 1-26. doi: 10.1007/s00205-010-0388-5.

[26]

E. Miot, A uniqueness criterion for unbounded solutions to the Vlasov-Poisson system, Commun. Math. Phys., 345 (2016), 469-482. doi: 10.1007/s00220-016-2707-7.

[27]

S. Okabe and T. Ukai, On classical solutions in the large in time of the two-dimensional Vlasov equation, Osaka J. Math., 15 (1978), 245-261.

[28]

K. Pfaffelmoser, Global existence of the Vlasov-Poisson system in three dimensions for general initial data, J. Differ. Equ., 95 (1992), 281-303. doi: 10.1016/0022-0396(92)90033-J.

[29]

J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Commun. Partial Differ. Equations, 16 (1991), 1313-1335. doi: 10.1080/03605309108820801.

[30]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.

[31]

S. Wollman, Global in time solution to the three-dimensional Vlasov-Poisson system, J. Math. Anal. Appl., 176 (1996), 76-91. doi: 10.1006/jmaa.1993.1200.

[1]

Meixia Xiao, Xianwen Zhang. On global solutions to the Vlasov-Poisson system with radiation damping. Kinetic & Related Models, 2018, 11 (5) : 1183-1209. doi: 10.3934/krm.2018046

[2]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[3]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic & Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729

[4]

Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic & Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015

[5]

Masahiro Suzuki. Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics. Kinetic & Related Models, 2011, 4 (2) : 569-588. doi: 10.3934/krm.2011.4.569

[6]

Hyung Ju Hwang, Jaewoo Jung, Juan J. L. Velázquez. On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 723-737. doi: 10.3934/dcds.2013.33.723

[7]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic & Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

[8]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[9]

Zili Chen, Xiuting Li, Xianwen Zhang. The two dimensional Vlasov-Poisson system with steady spatial asymptotics. Kinetic & Related Models, 2017, 10 (4) : 977-1009. doi: 10.3934/krm.2017039

[10]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinetic & Related Models, 2016, 9 (4) : 657-686. doi: 10.3934/krm.2016011

[11]

Francis Filbet, Roland Duclous, Bruno Dubroca. Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 283-305. doi: 10.3934/dcdss.2012.5.283

[12]

Dongming Wei. 1D Vlasov-Poisson equations with electron sheet initial data. Kinetic & Related Models, 2010, 3 (4) : 729-754. doi: 10.3934/krm.2010.3.729

[13]

Baptiste Fedele, Claudia Negulescu. Numerical study of an anisotropic Vlasov equation arising in plasma physics. Kinetic & Related Models, 2018, 11 (6) : 1395-1426. doi: 10.3934/krm.2018055

[14]

Yemin Chen. Smoothness of classical solutions to the Vlasov-Poisson-Landau system. Kinetic & Related Models, 2008, 1 (3) : 369-386. doi: 10.3934/krm.2008.1.369

[15]

Lan Luo, Hongjun Yu. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinetic & Related Models, 2016, 9 (2) : 393-405. doi: 10.3934/krm.2016.9.393

[16]

Kosuke Ono, Walter A. Strauss. Regular solutions of the Vlasov-Poisson-Fokker-Planck system. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 751-772. doi: 10.3934/dcds.2000.6.751

[17]

Jessy Mallet, Stéphane Brull, Bruno Dubroca. General moment system for plasma physics based on minimum entropy principle. Kinetic & Related Models, 2015, 8 (3) : 533-558. doi: 10.3934/krm.2015.8.533

[18]

Masahiro Suzuki. Asymptotic stability of a boundary layer to the Euler--Poisson equations for a multicomponent plasma. Kinetic & Related Models, 2016, 9 (3) : 587-603. doi: 10.3934/krm.2016008

[19]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure & Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

[20]

Robert T. Glassey, Walter A. Strauss. Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 457-472. doi: 10.3934/dcds.1999.5.457

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (48)
  • HTML views (70)
  • Cited by (0)

[Back to Top]