• Previous Article
    Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling
  • KRM Home
  • This Issue
  • Next Article
    On global solutions to the Vlasov-Poisson system with radiation damping
October 2018, 11(5): 1157-1181. doi: 10.3934/krm.2018045

Uniform stability of the Cucker-Smale model and its application to the Mean-Field limit

1. 

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 08826, Korea

2. 

Korea Institute for Advanced Study, Hoegiro 87, Seoul 02455, Korea

3. 

Department of Mathematical Sciences, Seoul National University, Seoul 08826, Korea

4. 

Center for Mathematical Sciences, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China

* Corresponding author

Received  April 2017 Revised  July 2017 Published  May 2018

Fund Project: The work of S.-Y.- Ha is supported by the Samsung Science and Technology Foundation under project number SSTF-BA1401-03.

Citation: Seung-Yeal Ha, Jeongho Kim, Xiongtao Zhang. Uniform stability of the Cucker-Smale model and its application to the Mean-Field limit. Kinetic & Related Models, 2018, 11 (5) : 1157-1181. doi: 10.3934/krm.2018045
References:
[1]

S. Ahn and S.-Y. Ha, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Physics, 51 (2010), 103301, 17pp doi: 10.1063/1.3496895.

[2]

H.-O. BaeY.-P. ChoiS.-Y. Ha and M.-J. Kang, Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids, Discrete and Continuous Dynamical System, 34 (2014), 4419-4458. doi: 10.3934/dcds.2014.34.4419.

[3]

H.-O. BaeY.-P. ChoiS.-Y. Ha and M.-J. Kang, Time-asymptotic interaction of flocking particles and incompressible viscous fluid, Nonlinearity, 25 (2012), 1155-1177. doi: 10.1088/0951-7715/25/4/1155.

[4]

A. BressanT.-P. Liu and T. Yang, L1 stability estimates for n × n conservation laws, Arch. Ration. Mech. Anal., 149 (1999), 1-22. doi: 10.1007/s002050050165.

[5]

J. A. CarrilloM. FornasierJ. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236. doi: 10.1137/090757290.

[6]

J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, (2010), 297–336. doi: 10.1007/978-0-8176-4946-3_12.

[7]

J. ChoS.-Y. HaF. HuangC. Jin and D. Ko, Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models and Methods in Appl. Sci., 26 (2016), 1191-1218. doi: 10.1142/S0218202516500287.

[8]

Y.-P. Choi, S.-Y. Ha and Z. Li, Emergent dynamics of the Cucker-Smale flocking model and its variants, in Active Particles, Vol. I -Advances in Theory, Models, Applications (tentative title), Series: Modeling and Simulation in Science and Technology, (eds. N. Bellomo, P. Degond, and E. Tadmor), Birkhäuser Basel, (2017), 299–331.

[9]

F. Cucker and E. Mordecki, Flocking in noisy environments, J. Math. Pures Appl., 89 (2008), 278-296. doi: 10.1016/j.matpur.2007.12.002.

[10]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862. doi: 10.1109/TAC.2007.895842.

[11]

P. Degond and S. Motsch, Large scale dynamics of the Persistent Turing Walker model of fish behavior, J. Stat. Phys., 131 (2008), 989-1021. doi: 10.1007/s10955-008-9529-8.

[12]

R. DuanM. Fornasier and G. Toscani, A kinetic flocking model with diffusion, Comm. Math. Phys., 300 (2010), 95-145. doi: 10.1007/s00220-010-1110-z.

[13]

S.-Y. Ha, $L_1$ stability of the Boltzmann equation for the hard-sphere model, Arch. Ration. Mech. Anal., 173 (2004), 279-296. doi: 10.1007/s00205-004-0321-x.

[14]

S.-Y. HaB. Kwon and M.-J. Kang, Emergent dynamics for the hydrodynamic Cucker-Smale system in a moving domain, SIAM. J. Math. Anal., 47 (2015), 3813-3831. doi: 10.1137/140984403.

[15]

S.-Y. HaB. Kwon and M.-J. Kang, A hydrodynamic model for the interaction of Cucker-Smale particles and incompressible fluid, Math. Mod. Meth. Appl. Sci., 24 (2014), 2311-2359. doi: 10.1142/S0218202514500225.

[16]

S.-Y. HaC. LattanzioB. Rubino and M. Slemrod, Flocking and synchronization of particle models, Quart. Appl. Math., 69 (2011), 91-103. doi: 10.1090/S0033-569X-2010-01200-7.

[17]

S.-Y. HaK. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469. doi: 10.4310/CMS.2009.v7.n2.a9.

[18]

S.-Y. Ha and J.-G. Liu, A simple proof of Cucker-Smale flocking dynamics and mean field limit, Commun. Math. Sci., 7 (2009), 297-325. doi: 10.4310/CMS.2009.v7.n2.a2.

[19]

S.-Y. Ha and M. Slemrod, Flocking dynamics of singularly perturbed oscillator chain and the Cucker-Smale system, J. Dyn. Differential Equations, 22 (2010), 325-330. doi: 10.1007/s10884-009-9142-9.

[20]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinetic Relat. Models, 1 (2008), 415-435. doi: 10.3934/krm.2008.1.415.

[21]

S.-Y. Ha and A. E. Tzavaras, Lyapunov functionals and L1-stability for discrete velocity Boltzmann equations, Comm. Math. Phys., 239 (2003), 65-92. doi: 10.1007/s00220-003-0866-9.

[22]

J. Hale, Ordinary Differential Equations, Dover, 1997.

[23]

E. Justh and P. Krishnaprasad, A simple control law for UAV formation flying, Technical Report, 2002-38 (http://www.isr.umd.edu)

[24]

N. E. LeonardD. A. PaleyF. LekienR. SepulchreD. M. Fratantoni and R. E. Davis, Collective motion, sensor networks and ocean sampling, Proc. IEEE, 95 (2007), 48-74. doi: 10.1109/JPROC.2006.887295.

[25]

T.-P. Liu and T. Yang, Well-posedness theory for hyperbolic conservation laws, Comm. Pure Appl. Math., 52 (1999), 1553-1586. doi: 10.1002/(SICI)1097-0312(199912)52:12<1553::AID-CPA3>3.0.CO;2-S.

[26]

S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Review, 56 (2014), 577-621. doi: 10.1137/120901866.

[27]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Statist. Phys., 144 (2011), 923-947. doi: 10.1007/s10955-011-0285-9.

[28]

H. Neunzert, An introduction to the nonlinear Boltzmann-Vlasov equation, Kinetic theories and the Boltzmann Equation, Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 1048 (1984), 60–110. doi: 10.1007/BFb0071878.

[29]

D. A. PaleyN. E. LeonardR. SepulchreD. Grunbaum and J. K. Parrish, Oscillator models and collective motion, IEEE Control Systems Magazine, 27 (2007), 89-105.

[30]

L. PereaP. Elosegui and G. Gómez, Extension of the Cucker-Smale control law to space flight formation, J. of Guidance, Control and Dynamics, 32 (2009), 527-537. doi: 10.2514/1.36269.

[31]

J. Toner and Y. Tu, Flocks, herds, and Schools: A quantitative theory of flocking, Physical Review E., 58 (1998), 4828-4858. doi: 10.1103/PhysRevE.58.4828.

[32]

T. VicsekCzirókE. Ben-JacobI. Cohen and O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229. doi: 10.1103/PhysRevLett.75.1226.

[33]

C. Villani, Optimal Transport, Old and New, Springer-Verlag, 2009. doi: 10.1007/978-3-540-71050-9.

show all references

References:
[1]

S. Ahn and S.-Y. Ha, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Physics, 51 (2010), 103301, 17pp doi: 10.1063/1.3496895.

[2]

H.-O. BaeY.-P. ChoiS.-Y. Ha and M.-J. Kang, Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids, Discrete and Continuous Dynamical System, 34 (2014), 4419-4458. doi: 10.3934/dcds.2014.34.4419.

[3]

H.-O. BaeY.-P. ChoiS.-Y. Ha and M.-J. Kang, Time-asymptotic interaction of flocking particles and incompressible viscous fluid, Nonlinearity, 25 (2012), 1155-1177. doi: 10.1088/0951-7715/25/4/1155.

[4]

A. BressanT.-P. Liu and T. Yang, L1 stability estimates for n × n conservation laws, Arch. Ration. Mech. Anal., 149 (1999), 1-22. doi: 10.1007/s002050050165.

[5]

J. A. CarrilloM. FornasierJ. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236. doi: 10.1137/090757290.

[6]

J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, (2010), 297–336. doi: 10.1007/978-0-8176-4946-3_12.

[7]

J. ChoS.-Y. HaF. HuangC. Jin and D. Ko, Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models and Methods in Appl. Sci., 26 (2016), 1191-1218. doi: 10.1142/S0218202516500287.

[8]

Y.-P. Choi, S.-Y. Ha and Z. Li, Emergent dynamics of the Cucker-Smale flocking model and its variants, in Active Particles, Vol. I -Advances in Theory, Models, Applications (tentative title), Series: Modeling and Simulation in Science and Technology, (eds. N. Bellomo, P. Degond, and E. Tadmor), Birkhäuser Basel, (2017), 299–331.

[9]

F. Cucker and E. Mordecki, Flocking in noisy environments, J. Math. Pures Appl., 89 (2008), 278-296. doi: 10.1016/j.matpur.2007.12.002.

[10]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862. doi: 10.1109/TAC.2007.895842.

[11]

P. Degond and S. Motsch, Large scale dynamics of the Persistent Turing Walker model of fish behavior, J. Stat. Phys., 131 (2008), 989-1021. doi: 10.1007/s10955-008-9529-8.

[12]

R. DuanM. Fornasier and G. Toscani, A kinetic flocking model with diffusion, Comm. Math. Phys., 300 (2010), 95-145. doi: 10.1007/s00220-010-1110-z.

[13]

S.-Y. Ha, $L_1$ stability of the Boltzmann equation for the hard-sphere model, Arch. Ration. Mech. Anal., 173 (2004), 279-296. doi: 10.1007/s00205-004-0321-x.

[14]

S.-Y. HaB. Kwon and M.-J. Kang, Emergent dynamics for the hydrodynamic Cucker-Smale system in a moving domain, SIAM. J. Math. Anal., 47 (2015), 3813-3831. doi: 10.1137/140984403.

[15]

S.-Y. HaB. Kwon and M.-J. Kang, A hydrodynamic model for the interaction of Cucker-Smale particles and incompressible fluid, Math. Mod. Meth. Appl. Sci., 24 (2014), 2311-2359. doi: 10.1142/S0218202514500225.

[16]

S.-Y. HaC. LattanzioB. Rubino and M. Slemrod, Flocking and synchronization of particle models, Quart. Appl. Math., 69 (2011), 91-103. doi: 10.1090/S0033-569X-2010-01200-7.

[17]

S.-Y. HaK. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469. doi: 10.4310/CMS.2009.v7.n2.a9.

[18]

S.-Y. Ha and J.-G. Liu, A simple proof of Cucker-Smale flocking dynamics and mean field limit, Commun. Math. Sci., 7 (2009), 297-325. doi: 10.4310/CMS.2009.v7.n2.a2.

[19]

S.-Y. Ha and M. Slemrod, Flocking dynamics of singularly perturbed oscillator chain and the Cucker-Smale system, J. Dyn. Differential Equations, 22 (2010), 325-330. doi: 10.1007/s10884-009-9142-9.

[20]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinetic Relat. Models, 1 (2008), 415-435. doi: 10.3934/krm.2008.1.415.

[21]

S.-Y. Ha and A. E. Tzavaras, Lyapunov functionals and L1-stability for discrete velocity Boltzmann equations, Comm. Math. Phys., 239 (2003), 65-92. doi: 10.1007/s00220-003-0866-9.

[22]

J. Hale, Ordinary Differential Equations, Dover, 1997.

[23]

E. Justh and P. Krishnaprasad, A simple control law for UAV formation flying, Technical Report, 2002-38 (http://www.isr.umd.edu)

[24]

N. E. LeonardD. A. PaleyF. LekienR. SepulchreD. M. Fratantoni and R. E. Davis, Collective motion, sensor networks and ocean sampling, Proc. IEEE, 95 (2007), 48-74. doi: 10.1109/JPROC.2006.887295.

[25]

T.-P. Liu and T. Yang, Well-posedness theory for hyperbolic conservation laws, Comm. Pure Appl. Math., 52 (1999), 1553-1586. doi: 10.1002/(SICI)1097-0312(199912)52:12<1553::AID-CPA3>3.0.CO;2-S.

[26]

S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Review, 56 (2014), 577-621. doi: 10.1137/120901866.

[27]

S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Statist. Phys., 144 (2011), 923-947. doi: 10.1007/s10955-011-0285-9.

[28]

H. Neunzert, An introduction to the nonlinear Boltzmann-Vlasov equation, Kinetic theories and the Boltzmann Equation, Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 1048 (1984), 60–110. doi: 10.1007/BFb0071878.

[29]

D. A. PaleyN. E. LeonardR. SepulchreD. Grunbaum and J. K. Parrish, Oscillator models and collective motion, IEEE Control Systems Magazine, 27 (2007), 89-105.

[30]

L. PereaP. Elosegui and G. Gómez, Extension of the Cucker-Smale control law to space flight formation, J. of Guidance, Control and Dynamics, 32 (2009), 527-537. doi: 10.2514/1.36269.

[31]

J. Toner and Y. Tu, Flocks, herds, and Schools: A quantitative theory of flocking, Physical Review E., 58 (1998), 4828-4858. doi: 10.1103/PhysRevE.58.4828.

[32]

T. VicsekCzirókE. Ben-JacobI. Cohen and O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229. doi: 10.1103/PhysRevLett.75.1226.

[33]

C. Villani, Optimal Transport, Old and New, Springer-Verlag, 2009. doi: 10.1007/978-3-540-71050-9.

[1]

Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model. Networks & Heterogeneous Media, 2018, 13 (2) : 297-322. doi: 10.3934/nhm.2018013

[2]

Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381

[3]

Patrick Gerard, Christophe Pallard. A mean-field toy model for resonant transport. Kinetic & Related Models, 2010, 3 (2) : 299-309. doi: 10.3934/krm.2010.3.299

[4]

Gerasimenko Viktor. Heisenberg picture of quantum kinetic evolution in mean-field limit. Kinetic & Related Models, 2011, 4 (1) : 385-399. doi: 10.3934/krm.2011.4.385

[5]

Michael Herty, Mattia Zanella. Performance bounds for the mean-field limit of constrained dynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2023-2043. doi: 10.3934/dcds.2017086

[6]

Franco Flandoli, Matti Leimbach. Mean field limit with proliferation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3029-3052. doi: 10.3934/dcdsb.2016086

[7]

Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Mean-field backward stochastic Volterra integral equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1929-1967. doi: 10.3934/dcdsb.2013.18.1929

[8]

Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games. Networks & Heterogeneous Media, 2012, 7 (2) : 303-314. doi: 10.3934/nhm.2012.7.303

[9]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[10]

Seung-Yeal Ha, Ho Lee, Seok Bae Yun. Uniform $L^p$-stability theory for the space-inhomogeneous Boltzmann equation with external forces. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 115-143. doi: 10.3934/dcds.2009.24.115

[11]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[12]

Haiyan Zhang. A necessary condition for mean-field type stochastic differential equations with correlated state and observation noises. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1287-1301. doi: 10.3934/jimo.2016.12.1287

[13]

Juan Li, Wenqiang Li. Controlled reflected mean-field backward stochastic differential equations coupled with value function and related PDEs. Mathematical Control & Related Fields, 2015, 5 (3) : 501-516. doi: 10.3934/mcrf.2015.5.501

[14]

Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control & Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018

[15]

Xianping Wu, Xun Li, Zhongfei Li. A mean-field formulation for multi-period asset-liability mean-variance portfolio selection with probability constraints. Journal of Industrial & Management Optimization, 2018, 14 (1) : 249-265. doi: 10.3934/jimo.2017045

[16]

Seung-Yeal Ha, Mitsuru Yamazaki. $L^p$-stability estimates for the spatially inhomogeneous discrete velocity Boltzmann model. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 353-364. doi: 10.3934/dcdsb.2009.11.353

[17]

Juan Pablo Maldonado López. Discrete time mean field games: The short-stage limit. Journal of Dynamics & Games, 2015, 2 (1) : 89-101. doi: 10.3934/jdg.2015.2.89

[18]

Fabio Camilli, Elisabetta Carlini, Claudio Marchi. A model problem for Mean Field Games on networks. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4173-4192. doi: 10.3934/dcds.2015.35.4173

[19]

Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 559-579. doi: 10.3934/mbe.2017033

[20]

Carlos Arnoldo Morales, M. J. Pacifico. Lyapunov stability of $\omega$-limit sets. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 671-674. doi: 10.3934/dcds.2002.8.671

2016 Impact Factor: 1.261

Article outline

[Back to Top]