October 2018, 11(5): 1063-1083. doi: 10.3934/krm.2018041

On the spatially homogeneous and isotropic Einstein-Vlasov-Fokker-Planck system with cosmological scalar field

1. 

Department of Mathematics, Chalmers Institute of Technology, University of Gothenburg, Gothenburg, Sweden

2. 

Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, USA

* Corresponding author: S. Pankavich

Received  December 2016 Revised  September 2017 Published  May 2018

Fund Project: The second author is supported by the US National Science Foundation under awards DMS-1211667 and DMS-1614586

The Einstein-Vlasov-Fokker-Planck system describes the kinetic diffusion dynamics of self-gravitating particles within the Einstein theory of general relativity. We study the Cauchy problem for spatially homogeneous and isotropic solutions and prove the existence of both global-in-time solutions and solutions that blow-up in finite time depending on the size of certain functions of the initial data. We also derive information on the large-time behavior of global solutions and toward the singularity for solutions which blow-up in finite time. Our results entail the existence of a phase of decelerated expansion followed by a phase of accelerated expansion, in accordance with the physical expectations in cosmology.

Citation: Simone Calogero, Stephen Pankavich. On the spatially homogeneous and isotropic Einstein-Vlasov-Fokker-Planck system with cosmological scalar field. Kinetic & Related Models, 2018, 11 (5) : 1063-1083. doi: 10.3934/krm.2018041
References:
[1]

J. A. AlcántaraS. Calogero and S. Pankavich, Spatially homogeneous solutions of the Vlasov-Nordström-Fokker-Planck system, J. Diff. Equations, 257 (2014), 3700-3729. doi: 10.1016/j.jde.2014.07.006.

[2]

H. Andréasson, The einstein-vlasov system/kinetic theory, Living Rev. Relativity, 5 (2002), 2002-7, 33 pp, URL (cited on June 2016): http://www.livingreviews.org/lrr-2011-4. doi: 10.12942/lrr-2002-7.

[3]

S. Blaise Tchapnda and N. Noutchegueme, The surface-symmetric Einstein-Vlasov system with cosmological constant, Math. Proc. Camb. Phil. Soc., 138 (2005), 541-553. doi: 10.1017/S0305004104008266.

[4]

F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Funct. Analysis, 111 (1993), 239-258. doi: 10.1006/jfan.1993.1011.

[5]

S. Calogero, A kinetic theory of diffusion in general relativity with cosmological scalar field, J. Cosm. Astrop. Phys, 11 (2011), 016, 16pp.

[6]

J. A. CarrilloJ. Soler and J. L. Vázquez, Asymptotic behaviour and self-similarity for the three dimensional Vlasov-Poisson-Fokker-Planck system, J. Funct. Analysis, 141 (1996), 99-132. doi: 10.1006/jfan.1996.0123.

[7]

D. Fajman, J. Joudioux and J. Smulevici, The Stability of the Minkowski space for the Einstein-Vlasov system, Preprint, arXiv: 1707.06141.

[8]

H. Lee, Asymptotic behaviour of the Einstein-Vlasov system with a positive cosmological constant, Math. Proc. Camb. Phil. Soc., 137 (2004), 495-509. doi: 10.1017/S0305004104007960.

[9]

H. Lindblad and M. Taylor, Global stability of Minkowski space for the Einstein-Vlasov system in the harmonic gauge, Preprint, arXiv: 1707.06079.

[10]

R. Maartens and S. D. Maharaj, Invariant solutions of Liouville's equation in Robertson-Walker space-times, Gen. Rel. Grav., 19 (1987), 1223-1234. doi: 10.1007/BF00759102.

[11]

K. Ono, Global existence of regular solutions for the Vlasov-Poisson-Fokker-Planck system, J. Math. Anal. Appl., 263 (2001), 626-636. doi: 10.1006/jmaa.2001.7640.

[12]

S. Pankavich and N. Michalowksi, Global classical solutions to the one and one-half dimensional relativistic Vlasov-Maxwell-Fokker-Planck system, Kin. Rel. Models, 8 (2015), 169-199. doi: 10.3934/krm.2015.8.169.

[13]

S. Pankavich and J. Schaeffer, Global classical solutions of the "one and one-half dimensional" Vlasov-Maxwell-Fokker-Planck system, Comm. Math. Sci., 14 (2016), 209-232. doi: 10.4310/CMS.2016.v14.n1.a8.

[14]

S. Weinberg, Cosmology, Oxford University Press, Oxford, 2008.

show all references

References:
[1]

J. A. AlcántaraS. Calogero and S. Pankavich, Spatially homogeneous solutions of the Vlasov-Nordström-Fokker-Planck system, J. Diff. Equations, 257 (2014), 3700-3729. doi: 10.1016/j.jde.2014.07.006.

[2]

H. Andréasson, The einstein-vlasov system/kinetic theory, Living Rev. Relativity, 5 (2002), 2002-7, 33 pp, URL (cited on June 2016): http://www.livingreviews.org/lrr-2011-4. doi: 10.12942/lrr-2002-7.

[3]

S. Blaise Tchapnda and N. Noutchegueme, The surface-symmetric Einstein-Vlasov system with cosmological constant, Math. Proc. Camb. Phil. Soc., 138 (2005), 541-553. doi: 10.1017/S0305004104008266.

[4]

F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Funct. Analysis, 111 (1993), 239-258. doi: 10.1006/jfan.1993.1011.

[5]

S. Calogero, A kinetic theory of diffusion in general relativity with cosmological scalar field, J. Cosm. Astrop. Phys, 11 (2011), 016, 16pp.

[6]

J. A. CarrilloJ. Soler and J. L. Vázquez, Asymptotic behaviour and self-similarity for the three dimensional Vlasov-Poisson-Fokker-Planck system, J. Funct. Analysis, 141 (1996), 99-132. doi: 10.1006/jfan.1996.0123.

[7]

D. Fajman, J. Joudioux and J. Smulevici, The Stability of the Minkowski space for the Einstein-Vlasov system, Preprint, arXiv: 1707.06141.

[8]

H. Lee, Asymptotic behaviour of the Einstein-Vlasov system with a positive cosmological constant, Math. Proc. Camb. Phil. Soc., 137 (2004), 495-509. doi: 10.1017/S0305004104007960.

[9]

H. Lindblad and M. Taylor, Global stability of Minkowski space for the Einstein-Vlasov system in the harmonic gauge, Preprint, arXiv: 1707.06079.

[10]

R. Maartens and S. D. Maharaj, Invariant solutions of Liouville's equation in Robertson-Walker space-times, Gen. Rel. Grav., 19 (1987), 1223-1234. doi: 10.1007/BF00759102.

[11]

K. Ono, Global existence of regular solutions for the Vlasov-Poisson-Fokker-Planck system, J. Math. Anal. Appl., 263 (2001), 626-636. doi: 10.1006/jmaa.2001.7640.

[12]

S. Pankavich and N. Michalowksi, Global classical solutions to the one and one-half dimensional relativistic Vlasov-Maxwell-Fokker-Planck system, Kin. Rel. Models, 8 (2015), 169-199. doi: 10.3934/krm.2015.8.169.

[13]

S. Pankavich and J. Schaeffer, Global classical solutions of the "one and one-half dimensional" Vlasov-Maxwell-Fokker-Planck system, Comm. Math. Sci., 14 (2016), 209-232. doi: 10.4310/CMS.2016.v14.n1.a8.

[14]

S. Weinberg, Cosmology, Oxford University Press, Oxford, 2008.

[1]

Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure & Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435

[2]

Lan Luo, Hongjun Yu. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinetic & Related Models, 2016, 9 (2) : 393-405. doi: 10.3934/krm.2016.9.393

[3]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

[4]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[5]

Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic & Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169

[6]

José A. Carrillo, Renjun Duan, Ayman Moussa. Global classical solutions close to equilibrium to the Vlasov-Fokker-Planck-Euler system. Kinetic & Related Models, 2011, 4 (1) : 227-258. doi: 10.3934/krm.2011.4.227

[7]

Stephen Pankavich, Nicholas Michalowski. Global classical solutions for the "One and one-half'' dimensional relativistic Vlasov-Maxwell-Fokker-Planck system. Kinetic & Related Models, 2015, 8 (1) : 169-199. doi: 10.3934/krm.2015.8.169

[8]

Shiming Li, Yongsheng Li, Wei Yan. A global existence and blow-up threshold for Davey-Stewartson equations in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1899-1912. doi: 10.3934/dcdss.2016077

[9]

Shuyin Wu, Joachim Escher, Zhaoyang Yin. Global existence and blow-up phenomena for a weakly dissipative Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 633-645. doi: 10.3934/dcdsb.2009.12.633

[10]

Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure & Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721

[11]

Shu-Xiang Huang, Fu-Cai Li, Chun-Hong Xie. Global existence and blow-up of solutions to a nonlocal reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1519-1532. doi: 10.3934/dcds.2003.9.1519

[12]

Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535

[13]

Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827

[14]

John W. Barrett, Endre Süli. Existence of global weak solutions to Fokker-Planck and Navier-Stokes-Fokker-Planck equations in kinetic models of dilute polymers. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 371-408. doi: 10.3934/dcdss.2010.3.371

[15]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[16]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[17]

Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086

[18]

Hyung Ju Hwang, Juhi Jang. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 681-691. doi: 10.3934/dcdsb.2013.18.681

[19]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure & Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

[20]

Kosuke Ono, Walter A. Strauss. Regular solutions of the Vlasov-Poisson-Fokker-Planck system. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 751-772. doi: 10.3934/dcds.2000.6.751

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (38)
  • HTML views (86)
  • Cited by (0)

Other articles
by authors

[Back to Top]