• Previous Article
    Long time strong convergence to Bose-Einstein distribution for low temperature
  • KRM Home
  • This Issue
  • Next Article
    Convergence rate of solutions towards the stationary solutions to symmetric hyperbolic-parabolic systems in half space
August 2018, 11(4): 735-756. doi: 10.3934/krm.2018030

An asymptotic preserving scheme for kinetic models with singular limit

1. 

Department of Mathematics, North Carolina State University, Campus Box 8205, Raleigh NC 27695, USA

2. 

Department of Mathematics, Rice University, 6100 Main St., Houston, TX 77005, USA

3. 

Department of Mathematics, University of California, Los Angeles, 520 Portola Plaza, Los Angeles, CA 90095, USA

* Corresponding author: Alina Chertock

Received  June 2017 Revised  November 2017 Published  April 2018

We propose a new class of asymptotic preserving schemes to solve kinetic equations with mono-kinetic singular limit. The main idea to deal with the singularity is to transform the equations by appropriate scalings in velocity. In particular, we study two biologically related kinetic systems. We derive the scaling factors, and prove that the rescaled solution does not have a singular limit, under appropriate spatial non-oscillatory assumptions, which can be verified numerically by a newly developed asymptotic preserving scheme. We set up a few numerical experiments to demonstrate the accuracy, stability, efficiency and asymptotic preserving property of the schemes.

Citation: Alina Chertock, Changhui Tan, Bokai Yan. An asymptotic preserving scheme for kinetic models with singular limit. Kinetic & Related Models, 2018, 11 (4) : 735-756. doi: 10.3934/krm.2018030
References:
[1]

A. V. BobylevJ. A. Carrillo and I. M. Gamba, On some properties of kinetic and hydrodynamic equations for inelastic interactions, J. Statist. Phys., 98 (2000), 743-773. doi: 10.1023/A:1018627625800.

[2]

M. Bodnar and J. J. L. Velazquez, Derivation of macroscopic equations for individual cell-based models: A formal approach, Math. Methods Appl. Sci., 28 (2005), 1757-1779. doi: 10.1002/mma.638.

[3]

J. A. CarrilloY.-P. ChoiE. Tadmor and C. Tan, Critical thresholds in 1D Euler equations with non-local forces, Math. Models Methods Appl. Sci., 26 (2016), 185-206. doi: 10.1142/S0218202516500068.

[4]

J. A. CarrilloM. FornasierJ. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236. doi: 10.1137/090757290.

[5]

N. CrouseillesH. Hilvert and M. Lemou, Numerical schemes for kinetic equations in the anomalous diffusion limit. Part Ⅰ: The case of heavy-tailed equilibrium, SIAM J. Sci. Comput., 38 (2016), A737-A764. doi: 10.1137/15M1011366.

[6]

N. CrouseillesH. Hilvert and M. Lemou, Numerical schemes for kinetic equations in the anomalous diffusion limit. Part Ⅱ: Degenerate collision frequency, SIAM J. Sci. Comput., 38 (2016), A2464-A2491. doi: 10.1137/15M1053190.

[7]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862. doi: 10.1109/TAC.2007.895842.

[8]

T. Do, A. Kiselev, L. Ryzhik and C. Tan, Global regularity for the fractional Euler alignment system, Arch. Ration. Mech. Anal., 228 (2018), 1-37. doi: 10.1007/s00205-017-1184-2.

[9]

R. C. Fetecau and W. Sun, First-order aggregation models and zero inertia limits, J. Differential Equations, 259 (2015), 6774-6802. doi: 10.1016/j.jde.2015.08.018.

[10]

R. C. FetecauW. Sun and C. Tan, First-order aggregation models with alignment, Phys. D, 325 (2016), 146-163. doi: 10.1016/j.physd.2016.03.011.

[11]

F. Filbet and T. Rey, A rescaling velocity method for dissipative kinetic equations. Applications to granular media, J. Comput. Phys., 248 (2013), 177-199. doi: 10.1016/j.jcp.2013.04.023.

[12]

F. Filbet and G. Russo, A rescaling velocity method for kinetic equations: The homogeneous case, Modelling and numerics of kinetic dissipative systems, 191-202, Nova Sci. Publ., Hauppauge, NY, 2006.

[13]

T. GoudonS. JinJ.-G. Liu and B. Yan, Asymptotic-preserving schemes for kinetic-fluid modeling of disperse two-phase flows, J. Comput. Phys., 246 (2013), 145-164. doi: 10.1016/j.jcp.2013.03.038.

[14]

T. GoudonS. JinJ.-G. Liu and B. Yan, Asymptotic-preserving schemes for kinetic-fluid modeling of disperse two-phase flows with variable fluid density, Internat. J. Numer. Methods Fluids, 75 (2014), 81-102. doi: 10.1002/fld.3885.

[15]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415-435. doi: 10.3934/krm.2008.1.415.

[16]

P.-E. Jabin, Macroscopic limit of Vlasov type equations with friction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 651-672. doi: 10.1016/S0294-1449(00)00118-9.

[17]

S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., 21 (1999), 441-454. doi: 10.1137/S1064827598334599.

[18]

S. Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review, Riv. Math. Univ. Parma (N.S.), 3 (2012), 177-216.

[19]

A. Kiselev and C. Tan, Global regularity for 1D Eulerian dynamics with singular interaction forces, preprint, arXiv: 1707.07296.

[20]

A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol., 38 (1999), 534-570. doi: 10.1007/s002850050158.

[21]

D. Poyato and J. Soler, Euler-type equations and commutators in singular and hyperbolic limits of kinetic Cucker-Smale models, Math. Models Methods Appl. Sci., 27 (2017), 1089-1152. doi: 10.1142/S0218202517400103.

[22]

T. Rey and C. Tan, An exact rescaling velocity method for some kinetic flocking models, SIAM J. Numer. Anal., 54 (2016), 641-664. doi: 10.1137/140993430.

[23]

C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model, Comput. Graph (ACM), 21 (1987), 25-34. doi: 10.1145/37401.37406.

[24]

E. Tadmor and C. Tadmor, Critical thresholds in flocking hydrodynamics with non-local alignment, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130401, 22pp.. doi: 10.1098/rsta.2013.0401.

[25]

C. Tan, A discontinuous Galerkin method on kinetic flocking models, Math. Models Methods Appl. Sci., 27 (2017), 1199-1221. doi: 10.1142/S0218202517400139.

[26]

C. TopazA. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation, Bull. Math. Biol., 68 (2006), 1601-1623. doi: 10.1007/s11538-006-9088-6.

[27]

L. Wang and B. Yan, An asymptotic-preserving scheme for linear kinetic equation with fractional diffusion limit, J. Comput. Phys., 312 (2016), 157-174. doi: 10.1016/j.jcp.2016.02.034.

[28]

L. Wang and B. Yan, An asymptotic-preserving scheme for kinetic equation with anisotropic scattering: heavy tail equilibrium and degenerate collision frequency, preprint.

show all references

References:
[1]

A. V. BobylevJ. A. Carrillo and I. M. Gamba, On some properties of kinetic and hydrodynamic equations for inelastic interactions, J. Statist. Phys., 98 (2000), 743-773. doi: 10.1023/A:1018627625800.

[2]

M. Bodnar and J. J. L. Velazquez, Derivation of macroscopic equations for individual cell-based models: A formal approach, Math. Methods Appl. Sci., 28 (2005), 1757-1779. doi: 10.1002/mma.638.

[3]

J. A. CarrilloY.-P. ChoiE. Tadmor and C. Tan, Critical thresholds in 1D Euler equations with non-local forces, Math. Models Methods Appl. Sci., 26 (2016), 185-206. doi: 10.1142/S0218202516500068.

[4]

J. A. CarrilloM. FornasierJ. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236. doi: 10.1137/090757290.

[5]

N. CrouseillesH. Hilvert and M. Lemou, Numerical schemes for kinetic equations in the anomalous diffusion limit. Part Ⅰ: The case of heavy-tailed equilibrium, SIAM J. Sci. Comput., 38 (2016), A737-A764. doi: 10.1137/15M1011366.

[6]

N. CrouseillesH. Hilvert and M. Lemou, Numerical schemes for kinetic equations in the anomalous diffusion limit. Part Ⅱ: Degenerate collision frequency, SIAM J. Sci. Comput., 38 (2016), A2464-A2491. doi: 10.1137/15M1053190.

[7]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862. doi: 10.1109/TAC.2007.895842.

[8]

T. Do, A. Kiselev, L. Ryzhik and C. Tan, Global regularity for the fractional Euler alignment system, Arch. Ration. Mech. Anal., 228 (2018), 1-37. doi: 10.1007/s00205-017-1184-2.

[9]

R. C. Fetecau and W. Sun, First-order aggregation models and zero inertia limits, J. Differential Equations, 259 (2015), 6774-6802. doi: 10.1016/j.jde.2015.08.018.

[10]

R. C. FetecauW. Sun and C. Tan, First-order aggregation models with alignment, Phys. D, 325 (2016), 146-163. doi: 10.1016/j.physd.2016.03.011.

[11]

F. Filbet and T. Rey, A rescaling velocity method for dissipative kinetic equations. Applications to granular media, J. Comput. Phys., 248 (2013), 177-199. doi: 10.1016/j.jcp.2013.04.023.

[12]

F. Filbet and G. Russo, A rescaling velocity method for kinetic equations: The homogeneous case, Modelling and numerics of kinetic dissipative systems, 191-202, Nova Sci. Publ., Hauppauge, NY, 2006.

[13]

T. GoudonS. JinJ.-G. Liu and B. Yan, Asymptotic-preserving schemes for kinetic-fluid modeling of disperse two-phase flows, J. Comput. Phys., 246 (2013), 145-164. doi: 10.1016/j.jcp.2013.03.038.

[14]

T. GoudonS. JinJ.-G. Liu and B. Yan, Asymptotic-preserving schemes for kinetic-fluid modeling of disperse two-phase flows with variable fluid density, Internat. J. Numer. Methods Fluids, 75 (2014), 81-102. doi: 10.1002/fld.3885.

[15]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415-435. doi: 10.3934/krm.2008.1.415.

[16]

P.-E. Jabin, Macroscopic limit of Vlasov type equations with friction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 651-672. doi: 10.1016/S0294-1449(00)00118-9.

[17]

S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., 21 (1999), 441-454. doi: 10.1137/S1064827598334599.

[18]

S. Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review, Riv. Math. Univ. Parma (N.S.), 3 (2012), 177-216.

[19]

A. Kiselev and C. Tan, Global regularity for 1D Eulerian dynamics with singular interaction forces, preprint, arXiv: 1707.07296.

[20]

A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol., 38 (1999), 534-570. doi: 10.1007/s002850050158.

[21]

D. Poyato and J. Soler, Euler-type equations and commutators in singular and hyperbolic limits of kinetic Cucker-Smale models, Math. Models Methods Appl. Sci., 27 (2017), 1089-1152. doi: 10.1142/S0218202517400103.

[22]

T. Rey and C. Tan, An exact rescaling velocity method for some kinetic flocking models, SIAM J. Numer. Anal., 54 (2016), 641-664. doi: 10.1137/140993430.

[23]

C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model, Comput. Graph (ACM), 21 (1987), 25-34. doi: 10.1145/37401.37406.

[24]

E. Tadmor and C. Tadmor, Critical thresholds in flocking hydrodynamics with non-local alignment, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130401, 22pp.. doi: 10.1098/rsta.2013.0401.

[25]

C. Tan, A discontinuous Galerkin method on kinetic flocking models, Math. Models Methods Appl. Sci., 27 (2017), 1199-1221. doi: 10.1142/S0218202517400139.

[26]

C. TopazA. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation, Bull. Math. Biol., 68 (2006), 1601-1623. doi: 10.1007/s11538-006-9088-6.

[27]

L. Wang and B. Yan, An asymptotic-preserving scheme for linear kinetic equation with fractional diffusion limit, J. Comput. Phys., 312 (2016), 157-174. doi: 10.1016/j.jcp.2016.02.034.

[28]

L. Wang and B. Yan, An asymptotic-preserving scheme for kinetic equation with anisotropic scattering: heavy tail equilibrium and degenerate collision frequency, preprint.

Figure 1.  AP scheme under transformation
Figure 2.  Example 1: The test on assumption 49. From left to right: the time evolution of $\max\limits_x |\nabla _x u_\varepsilon |$, $\max\limits_x \frac{|\nabla _x \rho_\varepsilon |}{\rho_\varepsilon }$ and $\max\limits_x \frac{|\nabla _x P_\varepsilon |}{\rho_\varepsilon }$ for different values of $\varepsilon $. The lines for $\varepsilon = 10^{-3}$ and $\varepsilon = 10^{-4}$ are almost overlapped.
Figure 3.  Example 2: Top left: the time evolution of $\rho_1(x)$ solved from the original system (1) (blue solid lines) and the rescaled system (41) (red dashed lines). Top right: the time evolution of $u_1(x)$ solved from the original system (1) (blue solid lines) and the rescaled system (41) (red dashed lines). Bottom left: the distribution $f_1(x, v)$ at time $t = 0.7$ solved from the original system (1). Bottom right: the distribution $g_1(x, \xi)$ at time $t = 0.7$ solved from the rescaled system (41).
Figure 4.  Example 3: The density $\rho_\varepsilon (x)$ (left) and the macroscopic velocity $u_\varepsilon (x)$ (right) at time $t = 1$ computed by the scheme (42) with different $\varepsilon $'s are present, as well as that of the limiting system (6). The lines corresponding to $\varepsilon = 10^{-3}$ almost overlap with the lines of limiting system.
Figure 5.  Example 4: Time snapshots of the solution to the aggregation system. From left to right: the distribution $g_\varepsilon (x, \xi)$, the density $\rho_\varepsilon (x)$, the momentum $\rho_\varepsilon (x)u_\varepsilon (x)$ and the scaling factor $\omega_\varepsilon (x)$. In this test $\varepsilon = 1$.
Figure 6.  Example 4: Time snapshots of the solution to the aggregation system. From left to right: the distribution $g_\varepsilon (x, \xi)$, the density $\rho_\varepsilon (x)$, the momentum $\rho_\varepsilon (x)u_\varepsilon (x)$ and the scaling factor $\omega_\varepsilon (x)$. In this test $\varepsilon = 10^{-4}$. The stationary solution $\rho$ and $\rho u$ of the limiting system (6) is illustrated by red dashed lines in the last row.
[1]

Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381

[2]

Jingwei Hu, Shi Jin, Li Wang. An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: A splitting approach. Kinetic & Related Models, 2015, 8 (4) : 707-723. doi: 10.3934/krm.2015.8.707

[3]

Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic & Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019

[4]

Le Li, Lihong Huang, Jianhong Wu. Flocking and invariance of velocity angles. Mathematical Biosciences & Engineering, 2016, 13 (2) : 369-380. doi: 10.3934/mbe.2015007

[5]

Jeffrey R. Haack, Cory D. Hauck. Oscillatory behavior of Asymptotic-Preserving splitting methods for a linear model of diffusive relaxation. Kinetic & Related Models, 2008, 1 (4) : 573-590. doi: 10.3934/krm.2008.1.573

[6]

Stéphane Brull, Pierre Degond, Fabrice Deluzet, Alexandre Mouton. Asymptotic-preserving scheme for a bi-fluid Euler-Lorentz model. Kinetic & Related Models, 2011, 4 (4) : 991-1023. doi: 10.3934/krm.2011.4.991

[7]

Nicolas Crouseilles, Giacomo Dimarco, Mohammed Lemou. Asymptotic preserving and time diminishing schemes for rarefied gas dynamic. Kinetic & Related Models, 2017, 10 (3) : 643-668. doi: 10.3934/krm.2017026

[8]

Kazuo Aoki, Ansgar Jüngel, Peter A. Markowich. Small velocity and finite temperature variations in kinetic relaxation models. Kinetic & Related Models, 2010, 3 (1) : 1-15. doi: 10.3934/krm.2010.3.1

[9]

Nicolas Crouseilles, Mohammed Lemou, SV Raghurama Rao, Ankit Ruhi, Muddu Sekhar. Asymptotic preserving scheme for a kinetic model describing incompressible fluids. Kinetic & Related Models, 2016, 9 (1) : 51-74. doi: 10.3934/krm.2016.9.51

[10]

Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic & Related Models, 2010, 3 (1) : 35-58. doi: 10.3934/krm.2010.3.35

[11]

Nicolas Crouseilles, Mohammed Lemou. An asymptotic preserving scheme based on a micro-macro decomposition for Collisional Vlasov equations: diffusion and high-field scaling limits. Kinetic & Related Models, 2011, 4 (2) : 441-477. doi: 10.3934/krm.2011.4.441

[12]

Seung-Yeal Ha, Eitan Tadmor. From particle to kinetic and hydrodynamic descriptions of flocking. Kinetic & Related Models, 2008, 1 (3) : 415-435. doi: 10.3934/krm.2008.1.415

[13]

Vincent Calvez, Gaël Raoul, Christian Schmeiser. Confinement by biased velocity jumps: Aggregation of escherichia coli. Kinetic & Related Models, 2015, 8 (4) : 651-666. doi: 10.3934/krm.2015.8.651

[14]

Giuseppe Maria Coclite, Lorenzo di Ruvo. A singular limit problem for the Ibragimov-Shabat equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 661-673. doi: 10.3934/dcdss.2016020

[15]

Pedro Aceves-Sánchez, Christian Schmeiser. Fractional diffusion limit of a linear kinetic equation in a bounded domain. Kinetic & Related Models, 2017, 10 (3) : 541-551. doi: 10.3934/krm.2017021

[16]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[17]

Shota Sato, Eiji Yanagida. Asymptotic behavior of singular solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4027-4043. doi: 10.3934/dcds.2012.32.4027

[18]

Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles. Kinetic & Related Models, 2012, 5 (4) : 787-816. doi: 10.3934/krm.2012.5.787

[19]

Takeshi Fukao, Shuji Yoshikawa, Saori Wada. Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1915-1938. doi: 10.3934/cpaa.2017093

[20]

John Guckenheimer, Christian Kuehn. Homoclinic orbits of the FitzHugh-Nagumo equation: The singular-limit. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 851-872. doi: 10.3934/dcdss.2009.2.851

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (28)
  • HTML views (134)
  • Cited by (0)

Other articles
by authors

[Back to Top]