June 2018, 11(3): 647-695. doi: 10.3934/krm.2018027

The rigorous derivation of the Linear Landau equation from a particle system in a weak-coupling limit

Dipartimento di Matematica, Università di Roma "La Sapienza", P.le A. Moro, 5, 00185 Roma, Italy

* Corresponding author: Nicolo' Catapano

Received  January 2017 Revised  September 2017 Published  March 2018

We consider a system of N particles interacting via a short-range smooth potential, in a weak-coupling regime. This means that the number of particles $N$ goes to infinity and the range of the potential $ε$ goes to zero in such a way that $Nε^{2} = α$, with $α$ diverging in a suitable way. We provide a rigorous derivation of the Linear Landau equation from this particle system. The strategy of the proof consists in showing the asymptotic equivalence between the one-particle marginal and the solution of the linear Boltzmann equation with vanishing mean free path. This point follows [3] and makes use of technicalities developed in [16]. Then, following the ideas of Landau, we prove the asympotic equivalence between the solutions of the Boltzmann and Landau linear equation in the grazing collision limit.

Citation: Nicolo' Catapano. The rigorous derivation of the Linear Landau equation from a particle system in a weak-coupling limit. Kinetic & Related Models, 2018, 11 (3) : 647-695. doi: 10.3934/krm.2018027
References:
[1]

G. BasileA. Nota and M. Pulvirenti, A Diffusion Limit for a Test Particle in a Random Distribution of Scatterers, Journal of Statistical Physics, 155 (2014), 1087-1111. doi: 10.1007/s10955-014-0940-z.

[2]

A. V. BobylevM. Pulvirenti and C. Saffirio, From Particle Systems to the Landau Equation: A Consistency Result, Comm. Math. Phys., 319 (2013), 683-702. doi: 10.1007/s00220-012-1633-6.

[3]

T. BodineauI. Gallagher and L. Saint-raymond, The brownian motion as the limit of a deterministic system of hard-spheres, L. Invent. math., 203 (2016), 493-553. doi: 10.1007/s00222-015-0593-9.

[4] C. CercignaniR. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, vol. 106, Springer-Verlag, New York, 1994.
[5]

M. ColangeliF. Pezzotti and M. Pulvirenti, A Kac model for Fermions, M. Arch Rational Mech Anal, 216 (2015), 359-413. doi: 10.1007/s00205-014-0809-y.

[6]

L. Desvillettes and V. Ricci, A Rigorous Derivation of a Linear Kinetic Equation of Fokker-Planck Type in the Limit of Grazing Collisions, Journal of Statistical Physics, 104 (2001), 1173-1189. doi: 10.1023/A:1010461929872.

[7] K.-j. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000.
[8]

I. Gallagher, L. Saint-raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials, EMS Zurich Lectures in Advanced Mathematics, 2013.

[9]

G. Gallavotti, Rigorous Theory Of The Boltzmann Equation In The Lorentz Gas, Nota interna Istituto di Fisica, Università di Roma, 358 (1973).

[10]

H. Grad, Principles of the kinetic theory of gases, Handbuch der Physik, 3 (1958), 205-294.

[11]

F. King, BBGKY Hierarchy for Positive Potentials, Ph. d. thesis, Department of Mathematics, Univ. California, Berkeley, 1975.

[12]

K. Kirkpatrick, Rigorous derivation of the landau equation in the weak coupling limit, Communications on Pure and Applied Analysis, 8 (2009), 1895-1916. doi: 10.3934/cpaa.2009.8.1895.

[13]

L. Landau, Kinetic equation in the case of Coulomb interaction. (in German), Phys. Zs. Sow. Union, 100 (1936), p154.

[14]

O. E. Lanford, Time evolution of large classical systems, in Dynamical Systems Theory and Applications, Lecture Notes in Physics, 38 (1975), 1-111.

[15]

J. Lebowitz and H. Spohn, Steady state self-diffusion at low density, J. Statist. Phys., 29 (1982), 39-55. doi: 10.1007/BF01008247.

[16]

M. PulvirentiC. Saffirio and S. Simonella, On the validity of the Boltzmann equation for short range potentials, Reviews in Mathematical Physics, 26 (2014), 1450001, 64 pp.

[17]

M. Pulvirenti and S. Simonella, The Boltzmann-Grad limit of a hard sphere system: Analysis of the correlation error, Inventiones mathematicae, 207 (2017), 1135-1237, arXiv: 1405.4676 doi: 10.1007/s00222-016-0682-4.

[18]

S. Simonella, Evolution of correlation functions in the hard sphere dynamics, Journal of Statistical Physics, 155 (2014), 1191-1221. doi: 10.1007/s10955-013-0905-7.

[19]

H. Spohn, On the integrated form of the BBGKY hierarchy for hard spheres, arXiv: Math/0605068, 1-19.

[20]

K. Uchiyama, Derivation of the Boltzmann equation from particle dynamics, Hiroshima Mathematical Journal, 18 (1988), 245-297.

[21]

N. Ayi, From Newton's law to the linear Boltzmann equation without cut-offs, Commun. Math. Phys., 350 (2017), 1219-1274. doi: 10.1007/s00220-016-2821-6.

show all references

References:
[1]

G. BasileA. Nota and M. Pulvirenti, A Diffusion Limit for a Test Particle in a Random Distribution of Scatterers, Journal of Statistical Physics, 155 (2014), 1087-1111. doi: 10.1007/s10955-014-0940-z.

[2]

A. V. BobylevM. Pulvirenti and C. Saffirio, From Particle Systems to the Landau Equation: A Consistency Result, Comm. Math. Phys., 319 (2013), 683-702. doi: 10.1007/s00220-012-1633-6.

[3]

T. BodineauI. Gallagher and L. Saint-raymond, The brownian motion as the limit of a deterministic system of hard-spheres, L. Invent. math., 203 (2016), 493-553. doi: 10.1007/s00222-015-0593-9.

[4] C. CercignaniR. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, vol. 106, Springer-Verlag, New York, 1994.
[5]

M. ColangeliF. Pezzotti and M. Pulvirenti, A Kac model for Fermions, M. Arch Rational Mech Anal, 216 (2015), 359-413. doi: 10.1007/s00205-014-0809-y.

[6]

L. Desvillettes and V. Ricci, A Rigorous Derivation of a Linear Kinetic Equation of Fokker-Planck Type in the Limit of Grazing Collisions, Journal of Statistical Physics, 104 (2001), 1173-1189. doi: 10.1023/A:1010461929872.

[7] K.-j. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000.
[8]

I. Gallagher, L. Saint-raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials, EMS Zurich Lectures in Advanced Mathematics, 2013.

[9]

G. Gallavotti, Rigorous Theory Of The Boltzmann Equation In The Lorentz Gas, Nota interna Istituto di Fisica, Università di Roma, 358 (1973).

[10]

H. Grad, Principles of the kinetic theory of gases, Handbuch der Physik, 3 (1958), 205-294.

[11]

F. King, BBGKY Hierarchy for Positive Potentials, Ph. d. thesis, Department of Mathematics, Univ. California, Berkeley, 1975.

[12]

K. Kirkpatrick, Rigorous derivation of the landau equation in the weak coupling limit, Communications on Pure and Applied Analysis, 8 (2009), 1895-1916. doi: 10.3934/cpaa.2009.8.1895.

[13]

L. Landau, Kinetic equation in the case of Coulomb interaction. (in German), Phys. Zs. Sow. Union, 100 (1936), p154.

[14]

O. E. Lanford, Time evolution of large classical systems, in Dynamical Systems Theory and Applications, Lecture Notes in Physics, 38 (1975), 1-111.

[15]

J. Lebowitz and H. Spohn, Steady state self-diffusion at low density, J. Statist. Phys., 29 (1982), 39-55. doi: 10.1007/BF01008247.

[16]

M. PulvirentiC. Saffirio and S. Simonella, On the validity of the Boltzmann equation for short range potentials, Reviews in Mathematical Physics, 26 (2014), 1450001, 64 pp.

[17]

M. Pulvirenti and S. Simonella, The Boltzmann-Grad limit of a hard sphere system: Analysis of the correlation error, Inventiones mathematicae, 207 (2017), 1135-1237, arXiv: 1405.4676 doi: 10.1007/s00222-016-0682-4.

[18]

S. Simonella, Evolution of correlation functions in the hard sphere dynamics, Journal of Statistical Physics, 155 (2014), 1191-1221. doi: 10.1007/s10955-013-0905-7.

[19]

H. Spohn, On the integrated form of the BBGKY hierarchy for hard spheres, arXiv: Math/0605068, 1-19.

[20]

K. Uchiyama, Derivation of the Boltzmann equation from particle dynamics, Hiroshima Mathematical Journal, 18 (1988), 245-297.

[21]

N. Ayi, From Newton's law to the linear Boltzmann equation without cut-offs, Commun. Math. Phys., 350 (2017), 1219-1274. doi: 10.1007/s00220-016-2821-6.

Figure 2.  We denote with $\sigma\in S^{2}\left(\frac{v_{1}+v_{2}}{2}\right)$ the direction of $V^{'}$ and with $\theta$ the angle between $V$ and $V^{'}$
Figure 1.  Here $\omega = \omega(\nu, V)$ is the unit vector bisecting the angle between $-V$ and $V'$, $\nu$ is the unit vector pointing from the particle with velocity $v_{1}$ to the particle with velocity $v_{2}$ when they are about to collide. We denote with $\beta$ the angle between $-V$ and $\omega$, with $\varphi$ the angle between $-V$ and $\nu$, with $\rho = \sin\varphi$ the impact parameter and with $\theta$ the deflection angle. It results that $\theta = \pi-2\beta$
Figure 3.  A representation of a three dimensional scattering
Figure 5.  A representation of the tree graph $(1, 1, 2)$. At the time $t_{1}$ we create the particle $2$ on the particle $1$. Then at time $t_{2}$ we create the particle $3$ on the particle $1$. Finally at time $t_{3}$ the particle $4$ is created on the particle $2$
Figure 6.  We used a dashed line to evidence the virtual trajectory of the fourth particle
Figure 7.  The virtual trajectory of the praticles $i$ and $k$ and their backward history
[1]

Pierre Degond, Simone Goettlich, Axel Klar, Mohammed Seaid, Andreas Unterreiter. Derivation of a kinetic model from a stochastic particle system. Kinetic & Related Models, 2008, 1 (4) : 557-572. doi: 10.3934/krm.2008.1.557

[2]

Kay Kirkpatrick. Rigorous derivation of the Landau equation in the weak coupling limit. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1895-1916. doi: 10.3934/cpaa.2009.8.1895

[3]

Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381

[4]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[5]

Nicolas Fournier. Particle approximation of some Landau equations. Kinetic & Related Models, 2009, 2 (3) : 451-464. doi: 10.3934/krm.2009.2.451

[6]

Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic & Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019

[7]

Pedro Aceves-Sánchez, Christian Schmeiser. Fractional diffusion limit of a linear kinetic equation in a bounded domain. Kinetic & Related Models, 2017, 10 (3) : 541-551. doi: 10.3934/krm.2017021

[8]

Seung-Yeal Ha, Doron Levy. Particle, kinetic and fluid models for phototaxis. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 77-108. doi: 10.3934/dcdsb.2009.12.77

[9]

María del Mar González, Regis Monneau. Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1255-1286. doi: 10.3934/dcds.2012.32.1255

[10]

Yueling Jia, Zhaohui Huo. Inviscid limit behavior of solution for the multi-dimensional derivative complex Ginzburg-Landau equation. Kinetic & Related Models, 2014, 7 (1) : 57-77. doi: 10.3934/krm.2014.7.57

[11]

Qiongwei Huang, Jiashi Tang. Bifurcation of a limit cycle in the ac-driven complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 129-141. doi: 10.3934/dcdsb.2010.14.129

[12]

Seung-Yeal Ha, Eitan Tadmor. From particle to kinetic and hydrodynamic descriptions of flocking. Kinetic & Related Models, 2008, 1 (3) : 415-435. doi: 10.3934/krm.2008.1.415

[13]

Rainer Picard. On a comprehensive class of linear material laws in classical mathematical physics. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 339-349. doi: 10.3934/dcdss.2010.3.339

[14]

Miroslav Grmela, Michal Pavelka. Landau damping in the multiscale Vlasov theory. Kinetic & Related Models, 2018, 11 (3) : 521-545. doi: 10.3934/krm.2018023

[15]

Juan Calvo. On the hyperbolicity and causality of the relativistic Euler system under the kinetic equation of state. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1341-1347. doi: 10.3934/cpaa.2013.12.1341

[16]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[17]

Michele Gianfelice, Enza Orlandi. Dynamics and kinetic limit for a system of noiseless $d$-dimensional Vicsek-type particles. Networks & Heterogeneous Media, 2014, 9 (2) : 269-297. doi: 10.3934/nhm.2014.9.269

[18]

Etienne Bernard, Laurent Desvillettes, Franç cois Golse, Valeria Ricci. A derivation of the Vlasov-Stokes system for aerosol flows from the kinetic theory of binary gas mixtures. Kinetic & Related Models, 2018, 11 (1) : 43-69. doi: 10.3934/krm.2018003

[19]

Piotr B. Mucha. Limit of kinetic term for a Stefan problem. Conference Publications, 2007, 2007 (Special) : 741-750. doi: 10.3934/proc.2007.2007.741

[20]

Arnaud Debussche, Julien Vovelle. Diffusion limit for a stochastic kinetic problem. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2305-2326. doi: 10.3934/cpaa.2012.11.2305

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (27)
  • HTML views (161)
  • Cited by (0)

Other articles
by authors

[Back to Top]