June 2018, 11(3): 597-613. doi: 10.3934/krm.2018025

Propagation of stretched exponential moments for the Kac equation and Boltzmann equation with Maxwell molecules

1. 

Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia

2. 

Department of Mathematics, University of Pennsylvania, David Rittenhouse Lab., 209 South 33rd Street, Philadelphia, PA 19104, USA

* Corresponding author: Milana Pavić-Čolić

Received  April 2017 Revised  September 2017 Published  March 2018

We study the spatially homogeneous Boltzmann equation for Maxwell molecules, and its 1-dimensional model, the Kac equation. We prove propagation in time of stretched exponential moments of their weak solutions, both for the angular cutoff and the angular non-cutoff case. The order of the stretched exponential moments in question depends on the singularity rate of the angular kernel of the Boltzmann and the Kac equation. One of the main tools we use are Mittag-Leffler moments, which generalize the exponential ones.

Citation: Milana Pavić-Čolić, Maja Tasković. Propagation of stretched exponential moments for the Kac equation and Boltzmann equation with Maxwell molecules. Kinetic & Related Models, 2018, 11 (3) : 597-613. doi: 10.3934/krm.2018025
References:
[1]

R. J. AlonsoJ. A. CañizoI. M. Gamba and C. Mouhot, A new approach to the creation and propagation of exponential moments in the Boltzmann equation, Comm. Partial Differential Equations, 38 (2013), 155-169. doi: 10.1080/03605302.2012.715707.

[2]

L. Arkeryd, Intermolecular forces of infinite range and the Boltzmann equation, Arch. Rational Mech. Anal., 77 (1981), 11-21. doi: 10.1007/BF00280403.

[3]

A. V. Bobylev, Exact solutions of the nonlinear Boltzmann equation and the theory of relaxation of a Maxwell gas, Teoret. Mat. Fiz., 60 (1984), 280-310.

[4]

A. V. Bobylev, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, in Soviet Sci. Rev. Sect. C. Math. Phys., Vol. 7, Harwood Academic Publ., Chur, 7 (1988), 111-233.

[5]

A. V. Bobylev, Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems, J. Statist. Phys., 88 (1997), 1183-1214. doi: 10.1007/BF02732431.

[6]

A. V. Bobylev and I. M. Gamba, Upper Maxwellian bounds for the Boltzmann equation with pseudo-Maxwell molecules, Kinet. Relat. Models, 10 (2017), 573-585. doi: 10.3934/krm.2017023.

[7]

A. V. BobylevI. M. Gamba and V. A. Panferov, Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions, J. Statist. Phys., 116 (2004), 1651-1682. doi: 10.1023/B:JOSS.0000041751.11664.ea.

[8]

L. Desvillettes, Some applications of the method of moments for the homogeneous Boltzmann and Kac equations, Arch. Rational Mech. Anal., 123 (1993), 387-404. doi: 10.1007/BF00375586.

[9]

L. Desvillettes, About the regularizing properties of the non-cut-off Kac equation, Comm. Math. Phys., 168 (1995), 417-440. doi: 10.1007/BF02101556.

[10]

I. M. GambaV. Panferov and C. Villani, Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation, Arch. Ration. Mech. Anal., 194 (2009), 253-282. doi: 10.1007/s00205-009-0250-9.

[11]

X. Lu and C. Mouhot, On measure solutions of the Boltzmann equation, part Ⅰ: Moment production and stability estimates, J. Differential Equations, 252 (2012), 3305-3363. doi: 10.1016/j.jde.2011.10.021.

[12]

C. Mouhot, Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials, Comm. Math. Phys., 261 (2006), 629-672. doi: 10.1007/s00220-005-1455-x.

[13]

M. Tasković, R. J. Alonso, I. M. Gamba and N. Pavlović, On Mittag-Leffler moments for the Boltzmann equation for hard potentials without cutoff, SIAM J. Math. Anal., 50 (2018), 834-869, arXiv: 1512.06769. doi: 10.1137/17M1117926.

[14]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143 (1998), 273-307. doi: 10.1007/s002050050106.

[15]

C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of Mathematical Fluid Dynamics, vol. I, North-Holland, Amsterdam, (2002), 71-305. doi: 10.1016/S1874-5792(02)80004-0.

show all references

References:
[1]

R. J. AlonsoJ. A. CañizoI. M. Gamba and C. Mouhot, A new approach to the creation and propagation of exponential moments in the Boltzmann equation, Comm. Partial Differential Equations, 38 (2013), 155-169. doi: 10.1080/03605302.2012.715707.

[2]

L. Arkeryd, Intermolecular forces of infinite range and the Boltzmann equation, Arch. Rational Mech. Anal., 77 (1981), 11-21. doi: 10.1007/BF00280403.

[3]

A. V. Bobylev, Exact solutions of the nonlinear Boltzmann equation and the theory of relaxation of a Maxwell gas, Teoret. Mat. Fiz., 60 (1984), 280-310.

[4]

A. V. Bobylev, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, in Soviet Sci. Rev. Sect. C. Math. Phys., Vol. 7, Harwood Academic Publ., Chur, 7 (1988), 111-233.

[5]

A. V. Bobylev, Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems, J. Statist. Phys., 88 (1997), 1183-1214. doi: 10.1007/BF02732431.

[6]

A. V. Bobylev and I. M. Gamba, Upper Maxwellian bounds for the Boltzmann equation with pseudo-Maxwell molecules, Kinet. Relat. Models, 10 (2017), 573-585. doi: 10.3934/krm.2017023.

[7]

A. V. BobylevI. M. Gamba and V. A. Panferov, Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions, J. Statist. Phys., 116 (2004), 1651-1682. doi: 10.1023/B:JOSS.0000041751.11664.ea.

[8]

L. Desvillettes, Some applications of the method of moments for the homogeneous Boltzmann and Kac equations, Arch. Rational Mech. Anal., 123 (1993), 387-404. doi: 10.1007/BF00375586.

[9]

L. Desvillettes, About the regularizing properties of the non-cut-off Kac equation, Comm. Math. Phys., 168 (1995), 417-440. doi: 10.1007/BF02101556.

[10]

I. M. GambaV. Panferov and C. Villani, Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation, Arch. Ration. Mech. Anal., 194 (2009), 253-282. doi: 10.1007/s00205-009-0250-9.

[11]

X. Lu and C. Mouhot, On measure solutions of the Boltzmann equation, part Ⅰ: Moment production and stability estimates, J. Differential Equations, 252 (2012), 3305-3363. doi: 10.1016/j.jde.2011.10.021.

[12]

C. Mouhot, Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials, Comm. Math. Phys., 261 (2006), 629-672. doi: 10.1007/s00220-005-1455-x.

[13]

M. Tasković, R. J. Alonso, I. M. Gamba and N. Pavlović, On Mittag-Leffler moments for the Boltzmann equation for hard potentials without cutoff, SIAM J. Math. Anal., 50 (2018), 834-869, arXiv: 1512.06769. doi: 10.1137/17M1117926.

[14]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., 143 (1998), 273-307. doi: 10.1007/s002050050106.

[15]

C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of Mathematical Fluid Dynamics, vol. I, North-Holland, Amsterdam, (2002), 71-305. doi: 10.1016/S1874-5792(02)80004-0.

[1]

Jean-Marie Barbaroux, Dirk Hundertmark, Tobias Ried, Semjon Vugalter. Strong smoothing for the non-cutoff homogeneous Boltzmann equation for Maxwellian molecules with Debye-Yukawa type interaction. Kinetic & Related Models, 2017, 10 (4) : 901-924. doi: 10.3934/krm.2017036

[2]

Léo Glangetas, Hao-Guang Li, Chao-Jiang Xu. Sharp regularity properties for the non-cutoff spatially homogeneous Boltzmann equation. Kinetic & Related Models, 2016, 9 (2) : 299-371. doi: 10.3934/krm.2016.9.299

[3]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Uniqueness of solutions for the non-cutoff Boltzmann equation with soft potential. Kinetic & Related Models, 2011, 4 (4) : 919-934. doi: 10.3934/krm.2011.4.919

[4]

Nadia Lekrine, Chao-Jiang Xu. Gevrey regularizing effect of the Cauchy problem for non-cutoff homogeneous Kac's equation. Kinetic & Related Models, 2009, 2 (4) : 647-666. doi: 10.3934/krm.2009.2.647

[5]

Renjun Duan, Shuangqian Liu, Tong Yang, Huijiang Zhao. Stability of the nonrelativistic Vlasov-Maxwell-Boltzmann system for angular non-cutoff potentials. Kinetic & Related Models, 2013, 6 (1) : 159-204. doi: 10.3934/krm.2013.6.159

[6]

Radjesvarane Alexandre, Mouhamad Elsafadi. Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations II. Non cutoff case and non Maxwellian molecules. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 1-11. doi: 10.3934/dcds.2009.24.1

[7]

Zhaohui Huo, Yoshinori Morimoto, Seiji Ukai, Tong Yang. Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff. Kinetic & Related Models, 2008, 1 (3) : 453-489. doi: 10.3934/krm.2008.1.453

[8]

Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 187-212. doi: 10.3934/dcds.2009.24.187

[9]

Lingbing He, Yulong Zhou. High order approximation for the Boltzmann equation without angular cutoff. Kinetic & Related Models, 2018, 11 (3) : 547-596. doi: 10.3934/krm.2018024

[10]

Alexander V. Bobylev, Irene M. Gamba. Upper Maxwellian bounds for the Boltzmann equation with pseudo-Maxwell molecules. Kinetic & Related Models, 2017, 10 (3) : 573-585. doi: 10.3934/krm.2017023

[11]

Francesco Mainardi. On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2267-2278. doi: 10.3934/dcdsb.2014.19.2267

[12]

C. David Levermore, Weiran Sun. Compactness of the gain parts of the linearized Boltzmann operator with weakly cutoff kernels. Kinetic & Related Models, 2010, 3 (2) : 335-351. doi: 10.3934/krm.2010.3.335

[13]

Yoshinori Morimoto. A remark on Cannone-Karch solutions to the homogeneous Boltzmann equation for Maxwellian molecules. Kinetic & Related Models, 2012, 5 (3) : 551-561. doi: 10.3934/krm.2012.5.551

[14]

Evelyne Miot, Mario Pulvirenti, Chiara Saffirio. On the Kac model for the Landau equation. Kinetic & Related Models, 2011, 4 (1) : 333-344. doi: 10.3934/krm.2011.4.333

[15]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Exponential stability of the solutions to the Boltzmann equation for the Benard problem. Kinetic & Related Models, 2012, 5 (4) : 673-695. doi: 10.3934/krm.2012.5.673

[16]

Axel Heim, Vladimir Sidorenko, Uli Sorger. Computation of distributions and their moments in the trellis. Advances in Mathematics of Communications, 2008, 2 (4) : 373-391. doi: 10.3934/amc.2008.2.373

[17]

Thomas Hillen, Kevin J. Painter, Amanda C. Swan, Albert D. Murtha. Moments of von mises and fisher distributions and applications. Mathematical Biosciences & Engineering, 2017, 14 (3) : 673-694. doi: 10.3934/mbe.2017038

[18]

Yves Bourgault, Damien Broizat, Pierre-Emmanuel Jabin. Convergence rate for the method of moments with linear closure relations. Kinetic & Related Models, 2015, 8 (1) : 1-27. doi: 10.3934/krm.2015.8.1

[19]

Leonid V. Bogachev, Gregory Derfel, Stanislav A. Molchanov. Analysis of the archetypal functional equation in the non-critical case. Conference Publications, 2015, 2015 (special) : 132-141. doi: 10.3934/proc.2015.0132

[20]

Martin Frank, Thierry Goudon. On a generalized Boltzmann equation for non-classical particle transport. Kinetic & Related Models, 2010, 3 (3) : 395-407. doi: 10.3934/krm.2010.3.395

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (24)
  • HTML views (140)
  • Cited by (0)

Other articles
by authors

[Back to Top]