June 2018, 11(3): 521-545. doi: 10.3934/krm.2018023

Landau damping in the multiscale Vlasov theory

1. 

École Polytechnique de Montréal, C.P.6079 suc. Centre-ville, Montréal, H3C 3A7, Québec, Canada

2. 

Mathematical Institute, Faculty of Mathematics, Charles University, Sokolovská 83, 18675 Prague, Czech Republic

* Corresponding author: Miroslav Grmela

Received  March 2017 Revised  August 2017 Published  March 2018

Fund Project: This research was supported by the Natural Sciences and Engineering Research Council of Canada and by the Czech Science Foundation, project no. 17-15498Y

Vlasov kinetic theory is extended by adopting an extra one particle distribution function as an additional state variable characterizing the micro-turbulence internal structure. The extended Vlasov equation keeps the reversibility, the Hamiltonian structure, and the entropy conservation of the original Vlasov equation. In the setting of the extended Vlasov theory we then argue that the Fokker-Planck type damping in the velocity dependence of the extra distribution function induces the Landau damping. The same type of extension is made also in the setting of fluid mechanics.

Citation: Miroslav Grmela, Michal Pavelka. Landau damping in the multiscale Vlasov theory. Kinetic & Related Models, 2018, 11 (3) : 521-545. doi: 10.3934/krm.2018023
References:
[1]

S. Ansumali, I. V. Karlin and H. C. Öttinger, Thermodynamic Theory of Incomressible Hydrodynamics, Phys. Rev. Lett., 94 (2005), 080602.

[2]

V. I. Arnold, Sur la géometrie différentielle des groupes de Lie de dimension infini et ses applications dans l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier, 16 (1966), 319-361. doi: 10.5802/aif.233.

[3]

R. B. Bird, R. C. Armstrong and C. F. Curtiss, Dynamics of Polymeric Liquids: Volume 2 : Kinetic Theory, v. 2 ISBN 9780471015963, Board of advisors, enigineering, Wiley, 1997.

[4]

A. Clebsch, Über die Integration der hydrodynamische Gleichungen, J. Reine Angew. Math., 56 (1859), 1-10.

[5]

L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation, Invent. Math., 159 (2005), 245-316. doi: 10.1007/s00222-004-0389-9.

[6]

O. EsenM. Pavelka and M. Grmela, Hamiltonian coupling of electromagnetic field and matter, Int. J. Adv. Eng. Sci. Appl. Math., 9 (2017), 3-20. doi: 10.1007/s12572-017-0179-4.

[7]

E. Feireisl and A. Novotný, The low Mach number limit for the full Navier-Stokes-Fourier system, Arch. Rational Mech. Anal., 186 (2007), 77-107. doi: 10.1007/s00205-007-0066-4.

[8]

H. Grad, On Boltzmann's H-theorem, J. Soc. Indust. Math., 13 (1965), 259-277. doi: 10.1137/0113016.

[9]

M. Grmela, Particle and bracket formulations of kinetic equations, Contemp. Math., 28 (1984), 125-132.

[10]

M. Grmela, Extensions of classical hydrodynamics, J. Stat. Phys., 132 (2008), 581-602. doi: 10.1007/s10955-008-9558-3.

[11]

M. Grmela, Fluctuations in extended mass-action-law dynamics, Physica D, 241 (2012), 976-986. doi: 10.1016/j.physd.2012.02.008.

[12]

M. Grmela, Contact geometry of mesoscopic thermodynamics and dynamics, Entropy, 16 (2014), 1652-1686. doi: 10.3390/e16031652.

[13]

B. Haspot and E. Zatorska, From the highly compressible Navier-Stokes equations to the porous medium equation -rate of convergence, Discrete and Continuous Dynamical Systems, 36 (2016), 3107-3123.

[14]

D. Holm, Geometric Mechanics: Part Ⅰ. Dynamics and Symmetry, Imperial College Press, London, UK, 2011.

[15]

D. Jou, G. Lebon and J. Casas-V{á}zquez, Extended Irreversible Thermodynamics, Springer-Verlag, Berlin, 1993.

[16]

J. G. Kirkwood, The statistical mechanical theory of transport processes, Ⅰ, Ⅱ, J. Chem. Phys., 14 (1946), 180-201, 15 (1947), 72-76.

[17]

L. D. Landau, On the vibration of the electronic plasma, Zhurnal eksperimantalnoi teoreticheskoi fiziki, 16 (1946), 574-586.

[18]

E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Vol. 10 (1st ed.), Pergamon Press, ISBN 978-0-7506-2635-4,1981.

[19]

P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl., 71 (1998), 585-627. doi: 10.1016/S0021-7824(98)80139-6.

[20]

A. Majda, Comressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, Berlin, 1984.

[21]

J. Malmberg and C. Wharton, Collisionless damping of electrostatic plasma waves, Phys. Rev. Lett., 13 (1964), 184-186. doi: 10.1103/PhysRevLett.13.184.

[22]

J. E. Marsden and A. Weinstein, Coadjoint orbits, vortices and Clebsch variables for incompressible fluids, Physica D, 7 (1983), 305-323. doi: 10.1016/0167-2789(83)90134-3.

[23]

J. E. MarsdenT. S. Ratiu and A. Weinstein, Reduction and Hamiltonian structures on duals of semidirect product lie algebras, Cont. Math. AMS, 28 (1984), 55-100.

[24]

C. Mouhot and C. Villani, On Landau damping, Acta Mathematica, 207 (2011), 29-201. doi: 10.1007/s11511-011-0068-9.

[25]

I. Müller and T. Ruggeri, Rational Extended Thermodynamics, ISBN 9780387983738, Springer tracts in natural philosophy, 1998, Springer.

[26]

M. PavelkaV. KlikaO. Esen and M. Grmela, A hierarchy of Poisson brackets in non-equilibrium thermodynamics, Physica D: Nonlinear Phenomena, 335 (2016), 54-69. doi: 10.1016/j.physd.2016.06.011.

[27]

S. B. Pope, Turbulent Flows, Cambridge University Press, 2000.

[28]

R. Robert, Statistical mechanics and hydrodynamical turbulence, In Proceedings of the International Congress of Mathematicians, 1, 2, Zürich (1994), Basel, (1995), Birkhäuser, 1523-1531.

[29]

T. Ruggeri and M. Sugiyama, Rational Extended Thermodynamics Beyond the Monatomic Gas, Springer, Cham, 2015.

[30]

B. Turkington, Statistical equilibrium measures and coherent states in two-dimensional turbulence, Comm. Pure Appl. Math., 52 (1999), 781-809. doi: 10.1002/(SICI)1097-0312(199907)52:7<781::AID-CPA1>3.0.CO;2-C.

[31]

P. VánM. Pavelka and M. Grmela, Extra mass flux in fluid mechanics, J. Non-Equilibrium Thermodynamics, 42 (2017), 133-151.

show all references

References:
[1]

S. Ansumali, I. V. Karlin and H. C. Öttinger, Thermodynamic Theory of Incomressible Hydrodynamics, Phys. Rev. Lett., 94 (2005), 080602.

[2]

V. I. Arnold, Sur la géometrie différentielle des groupes de Lie de dimension infini et ses applications dans l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier, 16 (1966), 319-361. doi: 10.5802/aif.233.

[3]

R. B. Bird, R. C. Armstrong and C. F. Curtiss, Dynamics of Polymeric Liquids: Volume 2 : Kinetic Theory, v. 2 ISBN 9780471015963, Board of advisors, enigineering, Wiley, 1997.

[4]

A. Clebsch, Über die Integration der hydrodynamische Gleichungen, J. Reine Angew. Math., 56 (1859), 1-10.

[5]

L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation, Invent. Math., 159 (2005), 245-316. doi: 10.1007/s00222-004-0389-9.

[6]

O. EsenM. Pavelka and M. Grmela, Hamiltonian coupling of electromagnetic field and matter, Int. J. Adv. Eng. Sci. Appl. Math., 9 (2017), 3-20. doi: 10.1007/s12572-017-0179-4.

[7]

E. Feireisl and A. Novotný, The low Mach number limit for the full Navier-Stokes-Fourier system, Arch. Rational Mech. Anal., 186 (2007), 77-107. doi: 10.1007/s00205-007-0066-4.

[8]

H. Grad, On Boltzmann's H-theorem, J. Soc. Indust. Math., 13 (1965), 259-277. doi: 10.1137/0113016.

[9]

M. Grmela, Particle and bracket formulations of kinetic equations, Contemp. Math., 28 (1984), 125-132.

[10]

M. Grmela, Extensions of classical hydrodynamics, J. Stat. Phys., 132 (2008), 581-602. doi: 10.1007/s10955-008-9558-3.

[11]

M. Grmela, Fluctuations in extended mass-action-law dynamics, Physica D, 241 (2012), 976-986. doi: 10.1016/j.physd.2012.02.008.

[12]

M. Grmela, Contact geometry of mesoscopic thermodynamics and dynamics, Entropy, 16 (2014), 1652-1686. doi: 10.3390/e16031652.

[13]

B. Haspot and E. Zatorska, From the highly compressible Navier-Stokes equations to the porous medium equation -rate of convergence, Discrete and Continuous Dynamical Systems, 36 (2016), 3107-3123.

[14]

D. Holm, Geometric Mechanics: Part Ⅰ. Dynamics and Symmetry, Imperial College Press, London, UK, 2011.

[15]

D. Jou, G. Lebon and J. Casas-V{á}zquez, Extended Irreversible Thermodynamics, Springer-Verlag, Berlin, 1993.

[16]

J. G. Kirkwood, The statistical mechanical theory of transport processes, Ⅰ, Ⅱ, J. Chem. Phys., 14 (1946), 180-201, 15 (1947), 72-76.

[17]

L. D. Landau, On the vibration of the electronic plasma, Zhurnal eksperimantalnoi teoreticheskoi fiziki, 16 (1946), 574-586.

[18]

E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Vol. 10 (1st ed.), Pergamon Press, ISBN 978-0-7506-2635-4,1981.

[19]

P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl., 71 (1998), 585-627. doi: 10.1016/S0021-7824(98)80139-6.

[20]

A. Majda, Comressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, Berlin, 1984.

[21]

J. Malmberg and C. Wharton, Collisionless damping of electrostatic plasma waves, Phys. Rev. Lett., 13 (1964), 184-186. doi: 10.1103/PhysRevLett.13.184.

[22]

J. E. Marsden and A. Weinstein, Coadjoint orbits, vortices and Clebsch variables for incompressible fluids, Physica D, 7 (1983), 305-323. doi: 10.1016/0167-2789(83)90134-3.

[23]

J. E. MarsdenT. S. Ratiu and A. Weinstein, Reduction and Hamiltonian structures on duals of semidirect product lie algebras, Cont. Math. AMS, 28 (1984), 55-100.

[24]

C. Mouhot and C. Villani, On Landau damping, Acta Mathematica, 207 (2011), 29-201. doi: 10.1007/s11511-011-0068-9.

[25]

I. Müller and T. Ruggeri, Rational Extended Thermodynamics, ISBN 9780387983738, Springer tracts in natural philosophy, 1998, Springer.

[26]

M. PavelkaV. KlikaO. Esen and M. Grmela, A hierarchy of Poisson brackets in non-equilibrium thermodynamics, Physica D: Nonlinear Phenomena, 335 (2016), 54-69. doi: 10.1016/j.physd.2016.06.011.

[27]

S. B. Pope, Turbulent Flows, Cambridge University Press, 2000.

[28]

R. Robert, Statistical mechanics and hydrodynamical turbulence, In Proceedings of the International Congress of Mathematicians, 1, 2, Zürich (1994), Basel, (1995), Birkhäuser, 1523-1531.

[29]

T. Ruggeri and M. Sugiyama, Rational Extended Thermodynamics Beyond the Monatomic Gas, Springer, Cham, 2015.

[30]

B. Turkington, Statistical equilibrium measures and coherent states in two-dimensional turbulence, Comm. Pure Appl. Math., 52 (1999), 781-809. doi: 10.1002/(SICI)1097-0312(199907)52:7<781::AID-CPA1>3.0.CO;2-C.

[31]

P. VánM. Pavelka and M. Grmela, Extra mass flux in fluid mechanics, J. Non-Equilibrium Thermodynamics, 42 (2017), 133-151.

[1]

Marzia Bisi, Tommaso Ruggeri, Giampiero Spiga. Dynamical pressure in a polyatomic gas: Interplay between kinetic theory and extended thermodynamics. Kinetic & Related Models, 2018, 11 (1) : 71-95. doi: 10.3934/krm.2018004

[2]

Tomáš Roubíček. Thermodynamics of perfect plasticity. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 193-214. doi: 10.3934/dcdss.2013.6.193

[3]

Nelly Point, Silvano Erlicher. Convex analysis and thermodynamics. Kinetic & Related Models, 2013, 6 (4) : 945-954. doi: 10.3934/krm.2013.6.945

[4]

Thomas Leroy. Relativistic transfer equations: Comparison principle and convergence to the non-equilibrium regime. Kinetic & Related Models, 2015, 8 (4) : 725-763. doi: 10.3934/krm.2015.8.725

[5]

Toyohiko Aiki, Joost Hulshof, Nobuyuki Kenmochi, Adrian Muntean. Analysis of non-equilibrium evolution problems: Selected topics in material and life sciences. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : i-iii. doi: 10.3934/dcdss.2014.7.1i

[6]

Gerardo Hernández, Ernesto A. Lacomba. Are the geometries of the first and second laws of thermodynamics compatible?. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1113-1116. doi: 10.3934/dcds.2013.33.1113

[7]

Eduard Feireisl. Relative entropies in thermodynamics of complete fluid systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3059-3080. doi: 10.3934/dcds.2012.32.3059

[8]

Vaughn Climenhaga. Multifractal formalism derived from thermodynamics for general dynamical systems. Electronic Research Announcements, 2010, 17: 1-11. doi: 10.3934/era.2010.17.1

[9]

Yunfeng Jia, Yi Li, Jianhua Wu. Qualitative analysis on positive steady-states for an autocatalytic reaction model in thermodynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4785-4813. doi: 10.3934/dcds.2017206

[10]

Tomáš Roubíček. Modelling of thermodynamics of martensitic transformation in shape-memory alloys. Conference Publications, 2007, 2007 (Special) : 892-902. doi: 10.3934/proc.2007.2007.892

[11]

Eric Cancès, Claude Le Bris. Convergence to equilibrium of a multiscale model for suspensions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 449-470. doi: 10.3934/dcdsb.2006.6.449

[12]

Nicola Bellomo, Abdelghani Bellouquid, Juanjo Nieto, Juan Soler. On the multiscale modeling of vehicular traffic: From kinetic to hydrodynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1869-1888. doi: 10.3934/dcdsb.2014.19.1869

[13]

Luisa Arlotti, Bertrand Lods, Mustapha Mokhtar-Kharroubi. Non-autonomous Honesty theory in abstract state spaces with applications to linear kinetic equations. Communications on Pure & Applied Analysis, 2014, 13 (2) : 729-771. doi: 10.3934/cpaa.2014.13.729

[14]

John V. Shebalin. Theory and simulation of real and ideal magnetohydrodynamic turbulence. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 153-174. doi: 10.3934/dcdsb.2005.5.153

[15]

Peter R. Kramer, Joseph A. Biello, Yuri Lvov. Application of weak turbulence theory to FPU model. Conference Publications, 2003, 2003 (Special) : 482-491. doi: 10.3934/proc.2003.2003.482

[16]

Darryl D. Holm, Vakhtang Putkaradze, Cesare Tronci. Collisionless kinetic theory of rolling molecules. Kinetic & Related Models, 2013, 6 (2) : 429-458. doi: 10.3934/krm.2013.6.429

[17]

Emmanuel Frénod, Mathieu Lutz. On the Geometrical Gyro-Kinetic theory. Kinetic & Related Models, 2014, 7 (4) : 621-659. doi: 10.3934/krm.2014.7.621

[18]

P.K. Newton. N-vortex equilibrium theory. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 411-418. doi: 10.3934/dcds.2007.19.411

[19]

Barry Simon. Equilibrium measures and capacities in spectral theory. Inverse Problems & Imaging, 2007, 1 (4) : 713-772. doi: 10.3934/ipi.2007.1.713

[20]

Lukas Neumann, Christian Schmeiser. A kinetic reaction model: Decay to equilibrium and macroscopic limit. Kinetic & Related Models, 2016, 9 (3) : 571-585. doi: 10.3934/krm.2016007

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (28)
  • HTML views (144)
  • Cited by (0)

Other articles
by authors

[Back to Top]