June 2018, 11(3): 441-467. doi: 10.3934/krm.2018020

Wall effect on the motion of a rigid body immersed in a free molecular flow

School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan

I thank Tatsuo Iguchi for reading the paper very carefully

Received  March 2017 Revised  June 2017 Published  March 2018

Motion of a rigid body immersed in a semi-infinite expanse of free molecular gas in a $ d$-dimensional region bounded by an infinite plane wall is studied. The free molecular flow is described by the free Vlasov equation with the specular boundary condition. We show that the velocity $ V(t)$ of the body approaches its terminal velocity $ V_{∞}$ according to a power law $ V_{∞}-V(t)≈ t^{-(d-1)}$ by carefully analyzing the pre-collisions due to the presence of the wall. The exponent $ d-1$ is smaller than $ d+2$ for the case without the wall found in the classical work by Caprino, Marchioro and Pulvirenti [Comm. Math. Phys., 264 (2006), 167-189] and thus slower convergence results from the presence of the wall.

Citation: Kai Koike. Wall effect on the motion of a rigid body immersed in a free molecular flow. Kinetic & Related Models, 2018, 11 (3) : 441-467. doi: 10.3934/krm.2018020
References:
[1]

K. AokiG. CavallaroC. Marchioro and M. Pulvirenti, On the motion of a body in thermal equilibrium immersed in a perfect gas, M2AN Math. Model. Numer. Anal., 42 (2008), 263-275. doi: 10.1051/m2an:2008007.

[2]

A. BelmonteJ. Jacobsen and A. Jayaraman, Monotone solutions of a nonautonomous differential equation for a sedimenting sphere, Electron. J. Differ. Eq., 2001 (2001), 1-17.

[3]

P. Buttà, G. Cavallaro and C. Marchioro, Mathematical Models of Viscous Friction, Lecture Notes in Mathematics, 2135 Springer, Cham, 2015. doi: 10.1007/978-3-319-14759-8.

[4]

S. CaprinoG. Cavallaro and C. Marchioro, On a microscopic model of viscous friction, Math. Models Methods Appl. Sci., 17 (2007), 1369-1403. doi: 10.1142/S0218202507002315.

[5]

S. CaprinoC. Marchioro and M. Pulvirenti, Approach to equilibrium in a microscopic model of friction, Comm. Math. Phys., 264 (2006), 167-189. doi: 10.1007/s00220-006-1542-7.

[6]

G. Cavallaro, On the motion of a convex body interacting with a perfect gas in the mean-field approximation, Rend. Mat. Appl., 27 (2007), 123-145.

[7]

G. Cavallaro and C. Marchioro, On the approach to equilibrium for a pendulum immersed in a Stokes fluid, Math. Models Methods Appl. Sci., 20 (2010), 1999-2019. doi: 10.1142/S0218202510004854.

[8]

G. CavallaroC. Marchioro and T. Tsuji, Approach to equilibrium of a rotating sphere in a Stokes flow, Ann. Univ. Ferrara Sez. Ⅶ Sci. Mat., 57 (2011), 211-228. doi: 10.1007/s11565-011-0127-3.

[9]

X. Chen and W. Strauss, Approach to equilibrium of a body colliding specularly and diffusely with a sea of particles, Arch. Ration. Mech. Anal., 211 (2014), 879-910. doi: 10.1007/s00205-013-0675-z.

[10]

X. Chen and W. Strauss, Velocity reversal criterion of a body immersed in a sea of particles, Comm. Math. Phys., 338 (2015), 139-168. doi: 10.1007/s00220-015-2368-y.

[11]

C. Fanelli, F. Sisti and G. V. Stagno, Time dependent friction in a free gas, J. Math. Phys., 57 (2016), 033501, 12 pp. doi: 10.1063/1.4943013.

[12]

C. Ricciuti and F. Sisti, Effects of concavity on the motion of a body immersed in a Vlasov gas, SIAM J. Math. Anal., 46 (2014), 3579-3611. doi: 10.1137/140954003.

show all references

References:
[1]

K. AokiG. CavallaroC. Marchioro and M. Pulvirenti, On the motion of a body in thermal equilibrium immersed in a perfect gas, M2AN Math. Model. Numer. Anal., 42 (2008), 263-275. doi: 10.1051/m2an:2008007.

[2]

A. BelmonteJ. Jacobsen and A. Jayaraman, Monotone solutions of a nonautonomous differential equation for a sedimenting sphere, Electron. J. Differ. Eq., 2001 (2001), 1-17.

[3]

P. Buttà, G. Cavallaro and C. Marchioro, Mathematical Models of Viscous Friction, Lecture Notes in Mathematics, 2135 Springer, Cham, 2015. doi: 10.1007/978-3-319-14759-8.

[4]

S. CaprinoG. Cavallaro and C. Marchioro, On a microscopic model of viscous friction, Math. Models Methods Appl. Sci., 17 (2007), 1369-1403. doi: 10.1142/S0218202507002315.

[5]

S. CaprinoC. Marchioro and M. Pulvirenti, Approach to equilibrium in a microscopic model of friction, Comm. Math. Phys., 264 (2006), 167-189. doi: 10.1007/s00220-006-1542-7.

[6]

G. Cavallaro, On the motion of a convex body interacting with a perfect gas in the mean-field approximation, Rend. Mat. Appl., 27 (2007), 123-145.

[7]

G. Cavallaro and C. Marchioro, On the approach to equilibrium for a pendulum immersed in a Stokes fluid, Math. Models Methods Appl. Sci., 20 (2010), 1999-2019. doi: 10.1142/S0218202510004854.

[8]

G. CavallaroC. Marchioro and T. Tsuji, Approach to equilibrium of a rotating sphere in a Stokes flow, Ann. Univ. Ferrara Sez. Ⅶ Sci. Mat., 57 (2011), 211-228. doi: 10.1007/s11565-011-0127-3.

[9]

X. Chen and W. Strauss, Approach to equilibrium of a body colliding specularly and diffusely with a sea of particles, Arch. Ration. Mech. Anal., 211 (2014), 879-910. doi: 10.1007/s00205-013-0675-z.

[10]

X. Chen and W. Strauss, Velocity reversal criterion of a body immersed in a sea of particles, Comm. Math. Phys., 338 (2015), 139-168. doi: 10.1007/s00220-015-2368-y.

[11]

C. Fanelli, F. Sisti and G. V. Stagno, Time dependent friction in a free gas, J. Math. Phys., 57 (2016), 033501, 12 pp. doi: 10.1063/1.4943013.

[12]

C. Ricciuti and F. Sisti, Effects of concavity on the motion of a body immersed in a Vlasov gas, SIAM J. Math. Anal., 46 (2014), 3579-3611. doi: 10.1137/140954003.

Figure 1.  A two dimensional picture of a cylinder immersed in a semi-infinite expanse of gas in a region bounded by an infinite plane wall is shown. The radius of the cylinder is $R$ and the height is $h$. The distance between the cylinder and the wall is denoted by $X(t)$ and the velocity by $V(t) = dX(t)/dt$. A constant force $E$ is applied in the direction of the axis of the cylinder and a drag force $D_V(t)$ is exerted to the cylinder from the surrounding gas.
Figure 2.  A two dimensional picture of a pre-collision at $C_{W}^{+}(\tilde{\tau}_1)$ is shown. The horizontal distance traversed by the cylinder and the characteristic curve $x(s)$ from $\tilde{\tau}_1$ to $t$ coincide.
Figure 3.  Two dimensional picture of a pre-collision at $C_{W}^{-}(\tau_2)$ via pre-collision at the plane wall. The sum of the horizontal distance traversed by the cylinder and the characteristic curve $x(s)$ from $\tau_2$ to $t$ equals $2X(t)$.
[1]

Renjun Duan, Shuangqian Liu. Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force. Kinetic & Related Models, 2013, 6 (4) : 687-700. doi: 10.3934/krm.2013.6.687

[2]

Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087

[3]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[4]

Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 895-911. doi: 10.3934/dcdsb.2017045

[5]

Hua Chen, Shaohua Wu. The moving boundary problem in a chemotaxis model. Communications on Pure & Applied Analysis, 2012, 11 (2) : 735-746. doi: 10.3934/cpaa.2012.11.735

[6]

Fujun Zhou, Junde Wu, Shangbin Cui. Existence and asymptotic behavior of solutions to a moving boundary problem modeling the growth of multi-layer tumors. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1669-1688. doi: 10.3934/cpaa.2009.8.1669

[7]

Jie Wang, Xiaoqiang Wang. New asymptotic analysis method for phase field models in moving boundary problem with surface tension. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3185-3213. doi: 10.3934/dcdsb.2015.20.3185

[8]

Khaled El Dika. Smoothing effect of the generalized BBM equation for localized solutions moving to the right. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 973-982. doi: 10.3934/dcds.2005.12.973

[9]

Giovambattista Amendola, Sandra Carillo, John Murrough Golden, Adele Manes. Viscoelastic fluids: Free energies, differential problems and asymptotic behaviour. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1815-1835. doi: 10.3934/dcdsb.2014.19.1815

[10]

Luis Caffarelli, Juan-Luis Vázquez. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1393-1404. doi: 10.3934/dcds.2011.29.1393

[11]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions of a free boundary problem modelling the growth of tumors with Stokes equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 625-651. doi: 10.3934/dcds.2009.24.625

[12]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737

[13]

Renjun Duan, Tong Yang, Changjiang Zhu. Boltzmann equation with external force and Vlasov-Poisson-Boltzmann system in infinite vacuum. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 253-277. doi: 10.3934/dcds.2006.16.253

[14]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

[15]

Jian Yang. Asymptotic behavior of solutions for competitive models with a free boundary. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3253-3276. doi: 10.3934/dcds.2015.35.3253

[16]

Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431

[17]

Khalid Latrach, Hatem Megdiche. Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 305-321. doi: 10.3934/dcds.2011.29.305

[18]

Aram L. Karakhanyan. Lipschitz continuity of free boundary in the continuous casting problem with divergence form elliptic equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 261-277. doi: 10.3934/dcds.2016.36.261

[19]

Sergey Degtyarev. Classical solvability of the multidimensional free boundary problem for the thin film equation with quadratic mobility in the case of partial wetting. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3625-3699. doi: 10.3934/dcds.2017156

[20]

Tomás Caraballo, María J. Garrido–Atienza, Björn Schmalfuss, José Valero. Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 439-455. doi: 10.3934/dcdsb.2010.14.439

2016 Impact Factor: 1.261

Article outline

Figures and Tables

[Back to Top]