April 2018, 11(2): 337-355. doi: 10.3934/krm.2018016

On a Fokker-Planck equation for wealth distribution

1. 

Department of Mathematics, University of Pavia, Pavia, Italy

2. 

Department of Mathematics, University of Pavia, and IMATI-CNR, Pavia, Italy

* Corresponding authorr: Marco Torregrossa

Received  January 2017 Revised  May 2017 Published  January 2018

Fund Project: This work has been written within the activities of the National Group of Mathematical Physics (GNFM) of INdAM (National Institute of High Mathematics), and partially supported by the MIUR-PRIN Grant 2015PA5MP7 "Calculus of Variations"

We study here a Fokker-Planck equation with variable coefficient of diffusion and boundary conditions which appears in the study of the wealth distribution in a multi-agent society [2, 10, 22]. In particular, we analyze the large-time behavior of the solution, by showing that convergence to the steady state can be obtained in various norms at different rates.

Citation: Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic & Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016
References:
[1]

A. ArnoldP. MarkowichG. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differential Equations, 26 (2001), 43-100. doi: 10.1081/PDE-100002246.

[2]

J. F. Bouchaud and M. Mézard, Wealth condensation in a simple model of economy, Physica A, 282 (2000), 536-545. doi: 10.1016/S0378-4371(00)00205-3.

[3]

M. J. Cáceres and G. Toscani, Kinetic approach to long time behavior of linearized fast diffusion equations, J. Statist. Phys., 128 (2007), 883-925. doi: 10.1007/s10955-007-9329-6.

[4]

J. A. Carrillo and G. Toscani, Contractive probability metrics and asymptotic behavior of dissipative kinetic equations, Riv. Mat. Univ. Parma (7), 6 (2007), 75-198.

[5]

J. A. CarrilloS. Cordier and G. Toscani, Over-populated tails for conservative-in-the-mean inelastic Maxwell models, Discr. Cont. Dynamical Syst. A, 24 (2009), 59-81. doi: 10.3934/dcds.2009.24.59.

[6]

A. Chakraborti, Distributions of money in models of market economy, Int. J. Modern Phys. C, 13 (2002), 1315-1321. doi: 10.1142/S0129183102003905.

[7]

A. Chakraborti and B. K. Chakrabarti, Statistical mechanics of money: Effects of saving propensity, Eur. Phys. J. B, 17 (2000), 167-170.

[8]

A. ChatterjeeB. K. Chakrabarti and R. B. Stinchcombe, Master equation for a kinetic model of trading market and its analytic solution, Phys. Rev. E, 72 (2005), 026126. doi: 10.1103/PhysRevE.72.026126.

[9]

H. Chernoff, A note on an inequality involving the normal distribution, Ann. Probab., 9 (1981), 533-535. doi: 10.1214/aop/1176994428.

[10]

S. CordierL. Pareschi and G. Toscani, On a kinetic model for a simple market economy, J. Statist. Phys., 120 (2005), 253-277. doi: 10.1007/s10955-005-5456-0.

[11]

B. Düring, D. Matthes and G. Toscani, Kinetic Equations modelling Wealth Redistribution: A comparison of approaches, Phys. Rev. E, 78 (2008), 056103, 12pp.

[12]

B. DüringD. Matthes and G. Toscani, A Boltzmann-type approach to the formation of wealth distribution curves, (Notes of the Porto Ercole School, June 2008), Riv. Mat. Univ. Parma, 1 (2009), 199-261.

[13]

W. Feller, Two singular diffusion problems, Ann. Math., 54 (1951), 173-182. doi: 10.2307/1969318.

[14]

W. Feller, An Introduction to Probability Theory and Its Applications, Vol. Ⅰ. John Wiley & Sons Inc., New York, 1968.

[15]

G. FurioliA. PulvirentiE. Terraneo and G. Toscani, Fokker-Planck equations in the modelling of socio-economic phenomena, Math. Mod. Meth. Appl. Scie., 27 (2017), 115-158. doi: 10.1142/S0218202517400048.

[16]

G. GabettaG. Toscani and B. Wennberg, Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation, J. Statist. Phys., 81 (1995), 901-934. doi: 10.1007/BF02179298.

[17]

O. Johnson and A. Barron, Fisher information inequalities and the central limit theorem, Probab. Theory Related Fields, 129 (2004), 391-409. doi: 10.1007/s00440-004-0344-0.

[18]

C. A. Klaassen, On an inequality of Chernoff, Ann. Probability, 13 (1985), 966-974. doi: 10.1214/aop/1176992917.

[19]

C. Le Bris and P. L. Lions, Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients, Comm. Partial Differential Equations, 33 (2008), 1272-1317. doi: 10.1080/03605300801970952.

[20]

D. MatthesA. Juengel and G. Toscani, Convex Sobolev inequalities derived from entropy dissipation, Arch. Rat. Mech. Anal., 199 (2011), 563-596. doi: 10.1007/s00205-010-0331-9.

[21]

D. Matthes and G. Toscani, On steady distributions of kinetic models of conservative economies, J. Statist. Phys., 130 (2008), 1087-1117. doi: 10.1007/s10955-007-9462-2.

[22] L. Pareschi and G. Toscani, Interacting Multiagent Systems. Kinetic Equations & Monte Carlo Methods, Oxford University Press, Oxford, 2013.
[23]

V. Pareto, Cours d'Économie Politique, Tome Premier, Rouge Éd., Lausanne 1896; Tome second, Pichon Éd., Paris, 1897. doi: 10.3917/droz.paret.1964.01.

[24]

G. Toscani, Entropy dissipation and the rate of convergence to equilibrium for the Fokker-Planck equation, Quart. Appl. Math., 57 (1999), 521-541. doi: 10.1090/qam/1704435.

[25]

G. Toscani and C. Villani, Probability Metrics and Uniqueness of the Solution to the Boltzmann Equation for a Maxwell Gas, J. Statist. Phys., 94 (1999), 619-637. doi: 10.1023/A:1004589506756.

show all references

References:
[1]

A. ArnoldP. MarkowichG. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differential Equations, 26 (2001), 43-100. doi: 10.1081/PDE-100002246.

[2]

J. F. Bouchaud and M. Mézard, Wealth condensation in a simple model of economy, Physica A, 282 (2000), 536-545. doi: 10.1016/S0378-4371(00)00205-3.

[3]

M. J. Cáceres and G. Toscani, Kinetic approach to long time behavior of linearized fast diffusion equations, J. Statist. Phys., 128 (2007), 883-925. doi: 10.1007/s10955-007-9329-6.

[4]

J. A. Carrillo and G. Toscani, Contractive probability metrics and asymptotic behavior of dissipative kinetic equations, Riv. Mat. Univ. Parma (7), 6 (2007), 75-198.

[5]

J. A. CarrilloS. Cordier and G. Toscani, Over-populated tails for conservative-in-the-mean inelastic Maxwell models, Discr. Cont. Dynamical Syst. A, 24 (2009), 59-81. doi: 10.3934/dcds.2009.24.59.

[6]

A. Chakraborti, Distributions of money in models of market economy, Int. J. Modern Phys. C, 13 (2002), 1315-1321. doi: 10.1142/S0129183102003905.

[7]

A. Chakraborti and B. K. Chakrabarti, Statistical mechanics of money: Effects of saving propensity, Eur. Phys. J. B, 17 (2000), 167-170.

[8]

A. ChatterjeeB. K. Chakrabarti and R. B. Stinchcombe, Master equation for a kinetic model of trading market and its analytic solution, Phys. Rev. E, 72 (2005), 026126. doi: 10.1103/PhysRevE.72.026126.

[9]

H. Chernoff, A note on an inequality involving the normal distribution, Ann. Probab., 9 (1981), 533-535. doi: 10.1214/aop/1176994428.

[10]

S. CordierL. Pareschi and G. Toscani, On a kinetic model for a simple market economy, J. Statist. Phys., 120 (2005), 253-277. doi: 10.1007/s10955-005-5456-0.

[11]

B. Düring, D. Matthes and G. Toscani, Kinetic Equations modelling Wealth Redistribution: A comparison of approaches, Phys. Rev. E, 78 (2008), 056103, 12pp.

[12]

B. DüringD. Matthes and G. Toscani, A Boltzmann-type approach to the formation of wealth distribution curves, (Notes of the Porto Ercole School, June 2008), Riv. Mat. Univ. Parma, 1 (2009), 199-261.

[13]

W. Feller, Two singular diffusion problems, Ann. Math., 54 (1951), 173-182. doi: 10.2307/1969318.

[14]

W. Feller, An Introduction to Probability Theory and Its Applications, Vol. Ⅰ. John Wiley & Sons Inc., New York, 1968.

[15]

G. FurioliA. PulvirentiE. Terraneo and G. Toscani, Fokker-Planck equations in the modelling of socio-economic phenomena, Math. Mod. Meth. Appl. Scie., 27 (2017), 115-158. doi: 10.1142/S0218202517400048.

[16]

G. GabettaG. Toscani and B. Wennberg, Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation, J. Statist. Phys., 81 (1995), 901-934. doi: 10.1007/BF02179298.

[17]

O. Johnson and A. Barron, Fisher information inequalities and the central limit theorem, Probab. Theory Related Fields, 129 (2004), 391-409. doi: 10.1007/s00440-004-0344-0.

[18]

C. A. Klaassen, On an inequality of Chernoff, Ann. Probability, 13 (1985), 966-974. doi: 10.1214/aop/1176992917.

[19]

C. Le Bris and P. L. Lions, Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients, Comm. Partial Differential Equations, 33 (2008), 1272-1317. doi: 10.1080/03605300801970952.

[20]

D. MatthesA. Juengel and G. Toscani, Convex Sobolev inequalities derived from entropy dissipation, Arch. Rat. Mech. Anal., 199 (2011), 563-596. doi: 10.1007/s00205-010-0331-9.

[21]

D. Matthes and G. Toscani, On steady distributions of kinetic models of conservative economies, J. Statist. Phys., 130 (2008), 1087-1117. doi: 10.1007/s10955-007-9462-2.

[22] L. Pareschi and G. Toscani, Interacting Multiagent Systems. Kinetic Equations & Monte Carlo Methods, Oxford University Press, Oxford, 2013.
[23]

V. Pareto, Cours d'Économie Politique, Tome Premier, Rouge Éd., Lausanne 1896; Tome second, Pichon Éd., Paris, 1897. doi: 10.3917/droz.paret.1964.01.

[24]

G. Toscani, Entropy dissipation and the rate of convergence to equilibrium for the Fokker-Planck equation, Quart. Appl. Math., 57 (1999), 521-541. doi: 10.1090/qam/1704435.

[25]

G. Toscani and C. Villani, Probability Metrics and Uniqueness of the Solution to the Boltzmann Equation for a Maxwell Gas, J. Statist. Phys., 94 (1999), 619-637. doi: 10.1023/A:1004589506756.

[1]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[2]

John W. Barrett, Endre Süli. Existence of global weak solutions to Fokker-Planck and Navier-Stokes-Fokker-Planck equations in kinetic models of dilute polymers. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 371-408. doi: 10.3934/dcdss.2010.3.371

[3]

Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215

[4]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[5]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic & Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[6]

Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic & Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165

[7]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[8]

Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic & Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044

[9]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

[10]

Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845

[11]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks & Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

[12]

Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028

[13]

Zhong Tan, Yong Wang, Fanhui Xu. Large-time behavior of the full compressible Euler-Poisson system without the temperature damping. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1583-1601. doi: 10.3934/dcds.2016.36.1583

[14]

Youshan Tao, Lihe Wang, Zhi-An Wang. Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 821-845. doi: 10.3934/dcdsb.2013.18.821

[15]

Ken Shirakawa, Hiroshi Watanabe. Large-time behavior for a PDE model of isothermal grain boundary motion with a constraint. Conference Publications, 2015, 2015 (special) : 1009-1018. doi: 10.3934/proc.2015.1009

[16]

Jishan Fan, Fei Jiang. Large-time behavior of liquid crystal flows with a trigonometric condition in two dimensions. Communications on Pure & Applied Analysis, 2016, 15 (1) : 73-90. doi: 10.3934/cpaa.2016.15.73

[17]

Shifeng Geng, Lina Zhang. Large-time behavior of solutions for the system of compressible adiabatic flow through porous media with nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2211-2228. doi: 10.3934/cpaa.2014.13.2211

[18]

Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65

[19]

Jerry L. Bona, Laihan Luo. Large-time asymptotics of the generalized Benjamin-Ono-Burgers equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 15-50. doi: 10.3934/dcdss.2011.4.15

[20]

Vladimir I. Bogachev, Stanislav V. Shaposhnikov, Alexander Yu. Veretennikov. Differentiability of solutions of stationary Fokker--Planck--Kolmogorov equations with respect to a parameter. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3519-3543. doi: 10.3934/dcds.2016.36.3519

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (45)
  • HTML views (260)
  • Cited by (0)

Other articles
by authors

[Back to Top]