• Previous Article
    Local well-posedness of the full compressible Navier-Stokes-Maxwell system with vacuum
  • KRM Home
  • This Issue
  • Next Article
    Mathematical modeling of a discontinuous solution of the generalized Poisson-Nernst-Planck problem in a two-phase medium
February 2018, 11(1): 107-118. doi: 10.3934/krm.2018006

Non-contraction of intermediate admissible discontinuities for 3-D planar isentropic magnetohydrodynamics

Department of Mathematics, Sookmyung Women's University, Seoul 140-742, Korea

Received  July 2015 Revised  March 2017 Published  August 2017

Fund Project: This work was supported by the Foundation Sciences Mathématiques de Paris as a postdoctoral fellowship, and by an AMS-Simons Travel Grant. The author was also supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2013R1A6A3A03020506). The author thanks Professor Kevin Zumbrun for valuable comments on stability issues for MHD

We investigate a non-contraction property of large perturbations around intermediate entropic shock waves and contact discontinuities for the three-dimensional planar compressible isentropic magnetohydrodynamics (MHD). To do that, we take advantage of criteria developed by the author and Vasseur in [6], and non-contraction property is measured by pseudo distance based on relative entropy.

Citation: Moon-Jin Kang. Non-contraction of intermediate admissible discontinuities for 3-D planar isentropic magnetohydrodynamics. Kinetic & Related Models, 2018, 11 (1) : 107-118. doi: 10.3934/krm.2018006
References:
[1]

B. BarkerJ. Humpherys and K. Zumbrun, One-dimensional stability of parallel shock layers in isentropic magnetohydrodynamics, J. Differential Equations, 249 (2010), 2175-2213. doi: 10.1016/j.jde.2010.07.019.

[2]

B. BarkerO. Lafitte and K. Zumbrun, Existence and stability of viscous shock profiles for 2-D isentropic MHD with infinite electrical resistivity, Acta Math. Sci. Ser. B Engl. Ed., 30 (2010), 447-498. doi: 10.1016/S0252-9602(10)60058-6.

[3]

I.-L. Chern, Stability theorem and truncation error analysis for the Glimm scheme and for a front tracking method for flows with strong discontinuities, Comm. Pure Appl. Math., 42 (1989), 815-844. doi: 10.1002/cpa.3160420606.

[4]

H. Freistühler and Y. Trakhinin, On the viscous and inviscid stability of magnetohydrodynamic shock waves, Phys. D: Nonlinear Phenomena, 237 (2008), 3030-3037. doi: 10.1016/j.physd.2008.07.003.

[5]

O. GuésG. MétivierM. Williams and K. Zumbrun, Existence and stability of noncharacteristic boundary layers for the compressible Navier-Stokes and viscous MHD equations, Arch. Ration. Mech. Anal., 197 (2010), 1-87. doi: 10.1007/s00205-009-0277-y.

[6]

M.-J. Kang and A. Vasseur, Criteria on contractions for entropic discontinuities of systems of conservation laws, Arch. Ration. Mech. Anal., 222 (2016), 343-391. doi: 10.1007/s00205-016-1003-1.

[7]

N. Leger and A. Vasseur, Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations, Arch. Ration. Mech. Anal., 201 (2011), 271-302. doi: 10.1007/s00205-011-0431-1.

[8]

M. Lewicka, $L^1$ stability of patterns of non-interacting large shock waves, Indiana Univ. Math. J., 49 (2000), 1515-1537. doi: 10.1512/iumj.2000.49.1899.

[9]

M. Lewicka and K. Trivisa, On the $L^1$ well posedness of systems of conservation laws near solutions containing two large shocks, J. Differential Equations, 179 (2002), 133-177. doi: 10.1006/jdeq.2000.4000.

[10]

G. Métivier and K. Zumbrun, Hyperbolic boundary value problems for symmetric systems with variable multiplicities, J. Differential Equations, 211 (2005), 61-134. doi: 10.1016/j.jde.2004.06.002.

[11]

A. Vasseur, Relative entropy and contraction for extremal shocks of Conservation Laws up to a shift, Contemporary Mathematics of the AMS, 666 (2016), 385-404. doi: 10.1090/conm/666/13296.

[12]

K. Zumbrun and D. Serre, Viscous and inviscid stability of multidimensional planar shock fronts, Indiana Univ. Math. J., 48 (1999), 937-992. doi: 10.1512/iumj.1999.48.1765.

show all references

References:
[1]

B. BarkerJ. Humpherys and K. Zumbrun, One-dimensional stability of parallel shock layers in isentropic magnetohydrodynamics, J. Differential Equations, 249 (2010), 2175-2213. doi: 10.1016/j.jde.2010.07.019.

[2]

B. BarkerO. Lafitte and K. Zumbrun, Existence and stability of viscous shock profiles for 2-D isentropic MHD with infinite electrical resistivity, Acta Math. Sci. Ser. B Engl. Ed., 30 (2010), 447-498. doi: 10.1016/S0252-9602(10)60058-6.

[3]

I.-L. Chern, Stability theorem and truncation error analysis for the Glimm scheme and for a front tracking method for flows with strong discontinuities, Comm. Pure Appl. Math., 42 (1989), 815-844. doi: 10.1002/cpa.3160420606.

[4]

H. Freistühler and Y. Trakhinin, On the viscous and inviscid stability of magnetohydrodynamic shock waves, Phys. D: Nonlinear Phenomena, 237 (2008), 3030-3037. doi: 10.1016/j.physd.2008.07.003.

[5]

O. GuésG. MétivierM. Williams and K. Zumbrun, Existence and stability of noncharacteristic boundary layers for the compressible Navier-Stokes and viscous MHD equations, Arch. Ration. Mech. Anal., 197 (2010), 1-87. doi: 10.1007/s00205-009-0277-y.

[6]

M.-J. Kang and A. Vasseur, Criteria on contractions for entropic discontinuities of systems of conservation laws, Arch. Ration. Mech. Anal., 222 (2016), 343-391. doi: 10.1007/s00205-016-1003-1.

[7]

N. Leger and A. Vasseur, Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations, Arch. Ration. Mech. Anal., 201 (2011), 271-302. doi: 10.1007/s00205-011-0431-1.

[8]

M. Lewicka, $L^1$ stability of patterns of non-interacting large shock waves, Indiana Univ. Math. J., 49 (2000), 1515-1537. doi: 10.1512/iumj.2000.49.1899.

[9]

M. Lewicka and K. Trivisa, On the $L^1$ well posedness of systems of conservation laws near solutions containing two large shocks, J. Differential Equations, 179 (2002), 133-177. doi: 10.1006/jdeq.2000.4000.

[10]

G. Métivier and K. Zumbrun, Hyperbolic boundary value problems for symmetric systems with variable multiplicities, J. Differential Equations, 211 (2005), 61-134. doi: 10.1016/j.jde.2004.06.002.

[11]

A. Vasseur, Relative entropy and contraction for extremal shocks of Conservation Laws up to a shift, Contemporary Mathematics of the AMS, 666 (2016), 385-404. doi: 10.1090/conm/666/13296.

[12]

K. Zumbrun and D. Serre, Viscous and inviscid stability of multidimensional planar shock fronts, Indiana Univ. Math. J., 48 (1999), 937-992. doi: 10.1512/iumj.1999.48.1765.

[1]

Haiyan Yin. The stability of contact discontinuity for compressible planar magnetohydrodynamics. Kinetic & Related Models, 2017, 10 (4) : 1235-1253. doi: 10.3934/krm.2017047

[2]

Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907

[3]

Feimin Huang, Yi Wang, Tong Yang. Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity. Kinetic & Related Models, 2010, 3 (4) : 685-728. doi: 10.3934/krm.2010.3.685

[4]

Christopher F. Novak. Discontinuity-growth of interval-exchange maps. Journal of Modern Dynamics, 2009, 3 (3) : 379-405. doi: 10.3934/jmd.2009.3.379

[5]

Luca Dieci, Cinzia Elia, Dingheng Pi. Limit cycles for regularized discontinuous dynamical systems with a hyperplane of discontinuity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3091-3112. doi: 10.3934/dcdsb.2017165

[6]

Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047

[7]

Steffen Härting, Anna Marciniak-Czochra, Izumi Takagi. Stable patterns with jump discontinuity in systems with Turing instability and hysteresis. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 757-800. doi: 10.3934/dcds.2017032

[8]

John Bissell, Brian Straughan. Discontinuity waves as tipping points: Applications to biological & sociological systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1911-1934. doi: 10.3934/dcdsb.2014.19.1911

[9]

Alessandro Morando, Yuri Trakhinin, Paola Trebeschi. On local existence of MHD contact discontinuities. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 289-313. doi: 10.3934/dcdss.2016.9.289

[10]

Denis Serre, Alexis F. Vasseur. The relative entropy method for the stability of intermediate shock waves; the rich case. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4569-4577. doi: 10.3934/dcds.2016.36.4569

[11]

Luca Dieci, Cinzia Elia. Piecewise smooth systems near a co-dimension 2 discontinuity manifold: Can one say what should happen?. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1039-1068. doi: 10.3934/dcdss.2016041

[12]

Hualin Zheng. Stability of a superposition of shock waves with contact discontinuities for the Jin-Xin relaxation system. Kinetic & Related Models, 2015, 8 (3) : 559-585. doi: 10.3934/krm.2015.8.559

[13]

Jiang Xu, Wen-An Yong. Zero-relaxation limit of non-isentropic hydrodynamic models for semiconductors. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1319-1332. doi: 10.3934/dcds.2009.25.1319

[14]

Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527-552. doi: 10.3934/jmd.2013.7.527

[15]

Jing Wang, Feng Xie. On the Rayleigh-Taylor instability for the compressible non-isentropic inviscid fluids with a free interface. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2767-2784. doi: 10.3934/dcdsb.2016072

[16]

Xiangdi Huang, Zhouping Xin. On formation of singularity for non-isentropic Navier-Stokes equations without heat-conductivity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4477-4493. doi: 10.3934/dcds.2016.36.4477

[17]

Zhong Tan, Yong Wang, Xu Zhang. Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$. Kinetic & Related Models, 2012, 5 (3) : 615-638. doi: 10.3934/krm.2012.5.615

[18]

Hong Cai, Zhong Tan, Qiuju Xu. Time periodic solutions of the non-isentropic compressible fluid models of Korteweg type. Kinetic & Related Models, 2015, 8 (1) : 29-51. doi: 10.3934/krm.2015.8.29

[19]

Zhong Tan, Leilei Tong. Asymptotic behavior of the compressible non-isentropic Navier-Stokes-Maxwell system in $\mathbb{R}^3$. Kinetic & Related Models, 2018, 11 (1) : 191-213. doi: 10.3934/krm.2018010

[20]

Isaac A. García, Jaume Giné. Non-algebraic invariant curves for polynomial planar vector fields. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 755-768. doi: 10.3934/dcds.2004.10.755

2016 Impact Factor: 1.261

Metrics

  • PDF downloads (4)
  • HTML views (48)
  • Cited by (0)

Other articles
by authors

[Back to Top]